Frame
No Frame

Hyperscript

"Semiconductors"

© H. Föll

Matrix of Modules

Hyperscripts of AMAT: General Information

This matrix contains all modules (i.e. HTML files) of the Hyperscript. Incomplete modules will be finished and more modules will be added in due time. There are three main levels for organizing the modules:
Basics
Contains some reference information and on occasion longer texts on background knowledge that you should be familiar with.
Learning (main part)
Contains everything that you should know after taking the course.
Advanced
Supplies knowledge beyond the scope of the course that is of some interest. Includes, on occasion, also elaborations about historical, strange or funny stuff relating to topics of the course.
The main part ("learning") is further subdivided in 4 (vertical) columns and the (horizontal) chapters and sub-chapters which define the matrix. The columns "backbone I" and "backbone II" constitute the hard core of the Hyperscript; the columns "illustrations" and "exercises" intend to help in understanding and to practical applications of what has been learned.
The cells of the matrix contain all the modules, identified by their filename. The first letter of a filename has a specific meaning not important in this context. The numbers have the following meaning:
1. number=chapter
2. number=subchapter
3. number=running integer
 
Color coding of entries
 
Fonts Fixed Filenames
Blue Module is finished. r1_2_3 Backbone: Module 3 in chapter 1.2
Red Modul exists but is not finished q1_2_1 Excercises: "Quick questions" to chapter 1.2
Green Module contains JAVA or animation sq1_2_1 Excercises: Solutions to "Quick questions"
Light green "Multiple Choice" Exercises e1_2_3 Excercises: Third full exercise to chapter 1.2
Light blue "Quick questions" Exercises s1_2_3 Excercises: Solution to third full exercise to chapter 1.2
Pink Summaries c1_2_1 Excercises: "Multiple choice" to chapter 1.2
   

Metafiles

  Contents Preface Books for Students Running Term Books that helped
This hyperscript was started as a collection of lecture notes for two lecture courses - Semiconductor I and II.
However, Semiconductor II never came into being so the Hyperscript remained incomplete, covering mostly just Semiconductor I topics.
The following Matrix, however. does include some of the topics intended for part II to give you an idea of what I had in mind
Basics Backbone I Backbone II Illustrations Exercises Advanced

1. Introduction

1.1 Scope of the Course

r1_1_1
Goals
r1_1_2
Relation to other courses
r1_1_3
Background
r1_1_4
Organization




2. Basic Semiconductor Physics

2.1 Basic Band Theory
b2_1_1
Chemical potential
b2_1_2
Reciprocal Lattice
b2_1_3
Ohm and materials
b2_1_4
Ohm classical
b2_1_5
Phase/group velocity
b2_1_6
Thermodynamics primer
b2_1_7
Potential
b2_1_8
Density of states
m2_1_1
Simple Bloch proofs
m2_1_2
Fourier Bloch proof
m2_1_3
Index shuffling
r2_1_1
Constant potential,
r2_1_2
Diffraction and BZ
r2_1_3
Energy Gaps
r2_1_4
Bloch theorem
r2_1_5
Standard representations

j2_1_5
Parameter dependence band gap
i2_1_3
3-D Brillouin Zones
i2_1_4
Band diagram construction
q2_1_1
Quick questions
sq2_1_1
Solution to q2_1_1
e2_1_1
Const. Boundary cond.
s2_1_1
Solution to e2_1_1
e2_1_2
Density of states in 1 and 2 dim.
s2_1_2
Solution to e2_1_2
t2_1_1
Unequal length
t2_1_2
Band structure calc.
t2_1_3
Averaging vectors
2.2 Basic Semiconductor Theory and Devices
b2_2_1
Basic semicond. topics
b2_2_2
Basic equations
r2_2_1
Intrinsic Properties
r2_2_2
Doping
r2_2_3
Lifetime
r2_2_4
Junctions


j2_2_1
Fermi energy
i2_2_1
Life times
i2_2_2
Simple SCR and Poisson
i2_2_3
Carrier density/conduct.
i2_2_4
Mistake in picture

t2_2_2
Fermi for dopants
2.3 Elements of Advanced Theory
b2_3_1
Debye length simple
b2_3_2
cosh function
r2_3_1
Effective mass
r2_3_2
Quasi Fermi
r2_3_3
SRH recombination
r2_3_4
Useful relations
r2_3_5
Junctions reconsidered

i2_3_1
Debye length graphic
i2_3_2
Passivation
e2_3_1
Equality min. conc.
s2_3_1
Solution
t2_3_1
More recombination
t2_3_2
Alternative Einstein
t2_3_3
SCR in junction
t2_3_4
j forward from SCR
t2_3_5
Depletion
t2_3_6
Inversion
t2_3_7
Accumulation
t2_3_8
General MOS

3. Silicon: General Properties and Technologies

3.1 General Properties
 
r3_1_1
Conductivity etc.
r3_1_2
Diffusion
r3_1_3
Mech. properties
i3_1_1
Wafer market
i3_1_2
Numbers L and t
e3_1_1
Perfection
s3_1_1
Solution
t3_1_1
L with ELYMAT
t3_1_3
Anormal Diffusion
3.2 Silicon Production
b3_2_1
Solar cell primer

r3_2_1
Crystal + wafer
r3_2_2
Solar cells
r3_2_3
Lattice defects
i3_2_1
Poly-Si solar cells
i3_2_2
Solar cells - data


3.3 General Si Device and Product Considerations
    r3_3_1
Interfaces
r3_3_2
Scaling laws
   
3.4 Basic Si Devices
    r3_4_1
Diodes
r3_4_2
Bipolar transistor
r3_4_3
MOS transistor
  e3_4_1
I-V-solar cell
t3_4_1
Finite p-n-junction
t3_4_3
Diode primer

4. Silicon: Special Properties and Emerging Technologies

Mosty unfinished
4.1 Silicon on Insulator


r4_1_1
General
r4_1_2
modern developments



4.2 Etching of Silicon


r4_2_1
General
r4_2_2
Chem. etching


t4_2_2
CP meaning
4.3 Specialities


r4_3_1
Amorphous Si
r4_3_2
SiGe



4.4 Micro Electronic and Mechanical Systems (MEMS)


r4_4_1
General



5. Fundamentals of Optoelectronics

5.1 Materials and Radiant Recombination

r5_1_1
Basic questions
r5_1_2
Recomb. and luminescence
r5_1_3
Doping of III-V
r5_1_4
Wavelength eng.

i5_1_1
Dopants in Eg
e5_1_1
Injected density
t5_1_1
Radiation equilibrium
t5_1_3
Exciton recomb. general
5.2 Light and Semiconductors

r5_2_1
Efficiencies
r5_2_2
Light



t5_2_1
Photonic crystals
5.3 Junctions and Light
b5_3_1
Discont. and dipole layers
r5_3_1
Ideal heterojunctions
r5_3_2
Isotype Heterojunctions
r5_3_3
Real heterojunctions

i5_3_2
Motorola break-through?
Motorola
Original release

t5_3_3
Misfit dislocations
t5_3_4
Compliant substrates
5.4 Quantum Devices


r5_4_1
Multiple quantum wells



6. Principles of the Semiconductor LASER

6.1 LASER conditions

r6_1_1
Light, electrons, and inversion
r6_1_2
Light amplification
r6_1_3
Oscillations



e6_1_1
Shuffling Fermi functions
s6_1_1
Solution
t6_1_1
History Laser
t6_1_2
Inversion condition
t6_1_3
Fermis golden rule
t6_1_4
Gain coefficient
t6_1_5
Einstein coefficients
6.2 SpecificTopics


r6_2_1
Turning on
r6_2_2
Modes




7. Light Emitting Devices

7.1 Basic Requirements and Design Principles
  r7_1_1
Products, markets, ..
r7_1_2
Some LED Concepts
r7_1_3
Gain and index
r7_1_4
Double heterojunctions

    t7_1_1
LEDs - standard
t7_1_2
LEDs - emerging
t7_1_3
Replacing light bulbs
7.2 Specialities
    r7_2_1
Special Laser
     

8. Speed

8.1 Some Basics to Device Speed
  r8_1_1
General
r8_1_2
Time consuming processes
       
8.2 Dynamic Behavior of p-n-Junctions
  r8_2_1
General Observations
r8_2_2
Small signal response
r8_2_3
Switching diodes
      t8_1_1
Reverse recovery

9. Compound Semiconductor Technology

Mostly unfinished
9.1 General Remarks
  r9_1_1
Difference to Si Tech.
  i9_1_1
Market III-V
   
9.2 Crystal Growth
  r9_2_1
General
       
9.3 Thin Films
  r9_3_1
General Remarks
r9_3_2
Liquid Phase Epitaxy
       

10. Specialities

Mosty unfinished
10.1 Siliconcarbide SiC
ba_1_1
SiC polytypes
ra_1_1
SiC
ra_1_2
SiC - applications
  ia_1_1
Question
ia_1_2
Comparison
ia_1_3
Commercial specs
  ta_1_1
SiC Crystals Growth
and Defects
ta_1_2
SiC Epi on Si
ta_1_3
SiC History
ta_1_4
Photo luminescence
10.2 Galliumnitirde GaN
  ra_2_1
Basics and history
       
10.3 II - VI Semiconductors
10.4 Semiconducting Polymers
ba_4_1
Vocabulary
ra_2_1
Basics
      ta_4_1
Peierls instability
  (much more shoul follow)        
10.5 Diamond
10.6 Special Materials
 
Module Count (finished modules only)
17 53 1 19 7 26
Grand Total: 123