Frame No Frame |
Hyperscript"Semiconductors"© H. Föll Matrix of Modules |
Hyperscripts of AMAT: General Information |
This matrix contains all modules (i.e. HTML files) of the Hyperscript. Incomplete modules will be finished and more modules will be added in due time. There are three main levels for organizing the modules: | ||||||||||||||||||||||||||||||
Basics Contains some reference information and on occasion longer texts on background knowledge that you should be familiar with. |
||||||||||||||||||||||||||||||
Learning (main part) Contains everything that you should know after taking the course. |
||||||||||||||||||||||||||||||
Advanced Supplies knowledge beyond the scope of the course that is of some interest. Includes, on occasion, also elaborations about historical, strange or funny stuff relating to topics of the course. |
||||||||||||||||||||||||||||||
The main part ("learning") is further subdivided in 4 (vertical) columns and the (horizontal) chapters and sub-chapters which define the matrix. The columns "backbone I" and "backbone II" constitute the hard core of the Hyperscript; the columns "illustrations" and "exercises" intend to help in understanding and to practical applications of what has been learned. | ||||||||||||||||||||||||||||||
The cells of the matrix contain all the modules,
identified by their filename. The first letter of a filename has a specific
meaning not important in this context. The numbers have the following meaning:
1. number=chapter 2. number=subchapter 3. number=running integer |
||||||||||||||||||||||||||||||
Color coding of entries | ||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||
Metafiles |
|||||
Contents | Preface | Books for Students | Running Term | Books that helped | |
---|---|---|---|---|---|
This hyperscript was started as a collection of lecture
notes for two lecture courses -
Semiconductor I and II. However, Semiconductor II never came into being so the Hyperscript remained incomplete, covering mostly just Semiconductor I topics. The following Matrix, however. does include some of the topics intended for part II to give you an idea of what I had in mind |
|||||
Basics | Backbone I | Backbone II | Illustrations | Exercises | Advanced |
1. Introduction |
|||||
1.1 Scope of the Course | |||||
r1_1_1 Goals r1_1_2 Relation to other courses r1_1_3 Background r1_1_4 Organization |
|||||
2. Basic Semiconductor Physics |
|||||
2.1 Basic Band Theory | |||||
b2_1_1 Chemical potential b2_1_2 Reciprocal Lattice b2_1_3 Ohm and materials b2_1_4 Ohm classical b2_1_5 Phase/group velocity b2_1_6 Thermodynamics primer b2_1_7 Potential b2_1_8 Density of states m2_1_1 Simple Bloch proofs m2_1_2 Fourier Bloch proof m2_1_3 Index shuffling |
r2_1_1 Constant potential, r2_1_2 Diffraction and BZ r2_1_3 Energy Gaps r2_1_4 Bloch theorem r2_1_5 Standard representations |
j2_1_5 Parameter dependence band gap i2_1_3 3-D Brillouin Zones i2_1_4 Band diagram construction |
q2_1_1 Quick questions sq2_1_1 Solution to q2_1_1 e2_1_1 Const. Boundary cond. s2_1_1 Solution to e2_1_1 e2_1_2 Density of states in 1 and 2 dim. s2_1_2 Solution to e2_1_2 |
t2_1_1 Unequal length t2_1_2 Band structure calc. t2_1_3 Averaging vectors |
|
2.2 Basic Semiconductor Theory and Devices | |||||
b2_2_1 Basic semicond. topics b2_2_2 Basic equations |
r2_2_1 Intrinsic Properties r2_2_2 Doping r2_2_3 Lifetime r2_2_4 Junctions |
j2_2_1 Fermi energy i2_2_1 Life times i2_2_2 Simple SCR and Poisson i2_2_3 Carrier density/conduct. i2_2_4 Mistake in picture |
t2_2_2 Fermi for dopants |
||
2.3 Elements of Advanced Theory | |||||
b2_3_1 Debye length simple b2_3_2 cosh function |
r2_3_1 Effective mass r2_3_2 Quasi Fermi r2_3_3 SRH recombination r2_3_4 Useful relations r2_3_5 Junctions reconsidered |
i2_3_1 Debye length graphic i2_3_2 Passivation |
e2_3_1 Equality min. conc. s2_3_1 Solution |
t2_3_1 More recombination t2_3_2 Alternative Einstein t2_3_3 SCR in junction t2_3_4 j forward from SCR t2_3_5 Depletion t2_3_6 Inversion t2_3_7 Accumulation t2_3_8 General MOS |
|
3. Silicon: General Properties and Technologies |
|||||
3.1 General Properties | |||||
r3_1_1 Conductivity etc. r3_1_2 Diffusion r3_1_3 Mech. properties |
i3_1_1 Wafer market i3_1_2 Numbers L and t |
e3_1_1 Perfection s3_1_1 Solution |
t3_1_1 L with ELYMAT t3_1_3 Anormal Diffusion |
||
3.2 Silicon Production | |||||
b3_2_1 Solar cell primer |
r3_2_1 Crystal + wafer r3_2_2 Solar cells r3_2_3 Lattice defects |
i3_2_1 Poly-Si solar cells i3_2_2 Solar cells - data |
|||
3.3 General Si Device and Product Considerations | |||||
r3_3_1 Interfaces r3_3_2 Scaling laws |
|||||
3.4 Basic Si Devices | |||||
r3_4_1 Diodes r3_4_2 Bipolar transistor r3_4_3 MOS transistor |
e3_4_1 I-V-solar cell |
t3_4_1 Finite p-n-junction t3_4_3 Diode primer |
|||
4. Silicon: Special Properties and Emerging TechnologiesMosty unfinished |
|||||
4.1 Silicon on Insulator | |||||
r4_1_1 General r4_1_2 modern developments |
|||||
4.2 Etching of Silicon | |||||
r4_2_1 General r4_2_2 Chem. etching |
t4_2_2 CP meaning |
||||
4.3 Specialities | |||||
r4_3_1 Amorphous Si r4_3_2 SiGe |
|||||
4.4 Micro Electronic and Mechanical Systems (MEMS) | |||||
r4_4_1 General |
|||||
5. Fundamentals of Optoelectronics |
|||||
5.1 Materials and Radiant Recombination | |||||
r5_1_1 Basic questions r5_1_2 Recomb. and luminescence r5_1_3 Doping of III-V r5_1_4 Wavelength eng. |
i5_1_1 Dopants in Eg |
e5_1_1 Injected density |
t5_1_1 Radiation equilibrium t5_1_3 Exciton recomb. general |
||
5.2 Light and Semiconductors | |||||
r5_2_1 Efficiencies r5_2_2 Light |
t5_2_1 Photonic crystals |
||||
5.3 Junctions and Light | |||||
b5_3_1 Discont. and dipole layers |
r5_3_1 Ideal heterojunctions r5_3_2 Isotype Heterojunctions r5_3_3 Real heterojunctions |
i5_3_2 Motorola break-through? Motorola Original release |
t5_3_3 Misfit dislocations t5_3_4 Compliant substrates |
||
5.4 Quantum Devices | |||||
r5_4_1 Multiple quantum wells |
|||||
6. Principles of the Semiconductor LASER |
|||||
6.1 LASER conditions | |||||
r6_1_1 Light, electrons, and inversion r6_1_2 Light amplification r6_1_3 Oscillations |
e6_1_1 Shuffling Fermi functions s6_1_1 Solution |
t6_1_1 History Laser t6_1_2 Inversion condition t6_1_3 Fermis golden rule t6_1_4 Gain coefficient t6_1_5 Einstein coefficients |
|||
6.2 SpecificTopics | |||||
r6_2_1 Turning on r6_2_2 Modes |
|||||
7. Light Emitting Devices |
|||||
7.1 Basic Requirements and Design Principles | |||||
r7_1_1 Products, markets, .. r7_1_2 Some LED Concepts r7_1_3 Gain and index r7_1_4 Double heterojunctions |
t7_1_1 LEDs - standard t7_1_2 LEDs - emerging t7_1_3 Replacing light bulbs |
||||
7.2 Specialities | |||||
r7_2_1 Special Laser |
|||||
8. Speed |
|||||
8.1 Some Basics to Device Speed | |||||
r8_1_1 General r8_1_2 Time consuming processes |
|||||
8.2 Dynamic Behavior of p-n-Junctions | |||||
r8_2_1 General Observations r8_2_2 Small signal response r8_2_3 Switching diodes |
t8_1_1 Reverse recovery |
||||
9. Compound Semiconductor TechnologyMostly unfinished |
|||||
9.1 General Remarks | |||||
r9_1_1 Difference to Si Tech. |
i9_1_1 Market III-V |
||||
9.2 Crystal Growth | |||||
r9_2_1 General |
|||||
9.3 Thin Films | |||||
r9_3_1 General Remarks r9_3_2 Liquid Phase Epitaxy |
|||||
10. SpecialitiesMosty unfinished |
|||||
10.1 Siliconcarbide SiC | |||||
ba_1_1 SiC polytypes |
ra_1_1 SiC ra_1_2 SiC - applications |
ia_1_1 Question ia_1_2 Comparison ia_1_3 Commercial specs |
ta_1_1 SiC Crystals Growth and Defects ta_1_2 SiC Epi on Si ta_1_3 SiC History ta_1_4 Photo luminescence |
||
10.2 Galliumnitirde GaN | |||||
ra_2_1 Basics and history |
|||||
10.3 II - VI Semiconductors | |||||
10.4 Semiconducting Polymers | |||||
ba_4_1 Vocabulary |
ra_2_1 Basics |
ta_4_1 Peierls instability |
|||
(much more shoul follow) | |||||
10.5 Diamond | |||||
10.6 Special Materials | |||||
Module Count (finished modules only) | |||||
17 | 53 | 1 | 19 | 7 | 26 |
Grand Total: 123 |