Chapter 3
Calculus I: Functions of one Variable
3.1
Recapitulation: Derivatives and Integrals
3.2
Calculation rules for derivatives
3.2.1
Prove of product rule and chain rule
3.3
Calculation rules for integrals
3.4
Sequences and Series
3.4.1
Examples: Convergence of infinite series
3.5
Taylor series and their application
3.5.1
Example: Taylor expansion of exponential function
3.5.2
Example: Taylor expansion of sin function
3.5.3
Example: Taylor expansion of cos function
3.5.4
Example: Taylor expansion of the logarithm function
3.6
Taylor series and error estimation
3.6.1
Example: Transformation of a non linear problem into a linear problem
3.6.2
Example: Taylor series of arctan function and pi-calculation
3.7
Linear Optimization
3.8
Fitting to an orthonormal set of functions
3.9
Functions as vectors
3.10
Schmidts orthonormalization procedure
3.11
Fourier series
3.11.1
Example: Periodic step function
3.11.2
Example: Positive part of sin function
3.11.3
Example: Absolute of sin function
3.11.4
Example: Periodic parabolic function
3.12
Fourier series in complex description
3.12.1
Example: Fourier-Series with larger periodicity length
3.13
From Fourier series to Fourier-Transformation
3.14
Fourier-Transformation: Definition
3.14.1
Examples for Fourier transformation
3.15
Fourier Transformation: Properties
3.15.1
Convolution Theorem: Proof and example
3.16
Fourier Transformation: Solving DEQs
3.16.1
Forced oscillations: 2. Example for solving DEQ with Fourier Transformation
3.17
Important non-elementary functions: Gamma function
3.18
Important non-elementary functions: Delta function
3.19
Important non-elementary functions: Gauss- and Error function
3.20
Aspects of probability theory
3.21
Aspects of noise analysis
© J. Carstensen (Math for MS)