3.4 Sequences and Series

Sequences: \(\left\{a_n\right\}\;n=0,1,2,\ldots\;\;a_n\in\mathbb{R}\) or \(\mathbb{C}\) is called a sequence

\[\left\{a_n\right\}\stackrel{n\to\infty}{\longrightarrow} a \quad \mbox{or }\quad\lim_{n\to\infty} a_n=a\quad \mbox{if the sequence converges to a number $a\in\mathbb{R}$} \]

Series: \(\left\{a_n\right\}\) sequence then \(\sum_{n=0}^\infty a_n\) is called an infinite series

\[\begin{array}{cl}\sum_{n=0}^\infty a_n& \mbox{infinite series?}\\ \sum_{n=0}^N a_n& \mbox{finite series = o.k.}\\ \end{array}\]

If \(S_N=\sum\limits_{n=0}^\infty a_n\) converges then this means that \(\lim\limits_{N\to\infty} S_N = \lim\limits_{N\to\infty} \sum\limits_{n=0}^N a_n=\sum\limits_{n=0}^\infty a_n=\alpha\)
condition: \(a_n\rightarrow0\) if \(\sum\limits_{n=1}^\infty \frac{1}{n}=\infty\)!, hence \(a_n\rightarrow0\) is not a sufficient condition for a series to converge.
Nearly all theoretical considerations related to the convergence conditions for series rely on the geometrical series:

\[\sum_{n=0}^\infty x^n;\qquad a_n=x^n\]

We can use a small trick to calculate the sum

\[S_N = \sum_{n=0}^N x^n.\]

Let us write the sum twice

\[\begin{array}{cccccclc} S_N & = & 1 + & x + & x^2 +& ... +& x^N & \\ x\;S_N & = & & x + & x^2 +& ... +& x^N +& x^{N+1} \end{array}\]

subtracting both lines we get

\[(1-x) \;S_N = 1 - x^{N+1} \quad \mbox{or} \quad S_N = \frac{1 - x^{N+1}}{1-x}\]

so for \(\left|x\right|\lt1\) we find

\[\lim\limits_{N\to\infty} S_N = \frac{1}{1-x}\]

and for \(\left|x\right|\rangle 1\) the series diverges.
For the geometric series we have two conditions for the components \(a_n\)

  1. \[\frac{a_{n+1}}{a_n}=x\]
  2. \[\sqrt[n]{a_n}=x\]

These properties allow to specify the conditions to take the geometric series as a majorant for other series leading to the two standard convergence criteria for infinite series:

  1. If \(\sum\limits_{n=0}^\infty a_n\) is given and \(q\), \(n_0\) exist with \(\left|\frac{a_{n+1}}{a_n}\right|\leq q \lt1\) for \(n\ge n_0\) then \(\sum\limits_{n=0}^\infty a_n\) is convergent.
    If \(\left|\frac{a_{n+1}}{a_n}\right|\ge q\gt1\) then \(\sum a_n\) is divergent, if \(\left|\frac{a_{n+1}}{a_n}\right|\Rightarrow1\) no decision is possible.

  2. If \(q\), \(n_0\) exist with \(\sqrt[n]{a_n}\le q\lt1\) for \(n\ge n_0\) then \(\sum a_n\) convergent. If \(\sqrt[n]{a_n}\ge q\ge1\) then \(\sum a_n\) divergent. If \(\sqrt[n]{a_n}\to 1\) no decision is possible.

3.4.1 Examples: Convergence of infinite series


With frame Back Forward as PDF

© J. Carstensen (Math for MS)