Sequences: \(\left\{a_n\right\}\;n=0,1,2,\ldots\;\;a_n\in\mathbb{R}\) or \(\mathbb{C}\) is called a sequence
\[\left\{a_n\right\}\stackrel{n\to\infty}{\longrightarrow} a \quad \mbox{or }\quad\lim_{n\to\infty} a_n=a\quad \mbox{if the sequence converges to a number $a\in\mathbb{R}$} \] |
Series: \(\left\{a_n\right\}\) sequence then \(\sum_{n=0}^\infty a_n\) is called an infinite series
\[\begin{array}{cl}\sum_{n=0}^\infty a_n& \mbox{infinite series?}\\ \sum_{n=0}^N a_n& \mbox{finite series = o.k.}\\ \end{array}\] |
If \(S_N=\sum\limits_{n=0}^\infty a_n\) converges then this means that \(\lim\limits_{N\to\infty} S_N = \lim\limits_{N\to\infty} \sum\limits_{n=0}^N a_n=\sum\limits_{n=0}^\infty a_n=\alpha\)
condition: \(a_n\rightarrow0\) if \(\sum\limits_{n=1}^\infty \frac{1}{n}=\infty\)!,
hence \(a_n\rightarrow0\) is not a sufficient condition for a series to converge.
Nearly
all theoretical considerations related to the convergence conditions for series rely on the geometrical series:
\[\sum_{n=0}^\infty x^n;\qquad a_n=x^n\] |
We can use a small trick to calculate the sum
\[S_N = \sum_{n=0}^N x^n.\] |
Let us write the sum twice
\[\begin{array}{cccccclc} S_N & = & 1 + & x + & x^2 +& ... +& x^N & \\ x\;S_N & = & & x + & x^2 +& ... +& x^N +& x^{N+1} \end{array}\] |
subtracting both lines we get
\[(1-x) \;S_N = 1 - x^{N+1} \quad \mbox{or} \quad S_N = \frac{1 - x^{N+1}}{1-x}\] |
so for \(\left|x\right|\lt1\) we find
\[\lim\limits_{N\to\infty} S_N = \frac{1}{1-x}\] |
and for \(\left|x\right|\rangle 1\) the series diverges.
For the geometric series we have two conditions for the components \(a_n\)
\[\frac{a_{n+1}}{a_n}=x\] |
\[\sqrt[n]{a_n}=x\] |
These properties allow to specify the conditions to take the geometric series as a majorant for other series leading to the two standard convergence criteria for infinite series:
If \(\sum\limits_{n=0}^\infty a_n\) is given and \(q\), \(n_0\) exist with \(\left|\frac{a_{n+1}}{a_n}\right|\leq q \lt1\) for \(n\ge n_0\) then
\(\sum\limits_{n=0}^\infty a_n\) is convergent.
If
\(\left|\frac{a_{n+1}}{a_n}\right|\ge q\gt1\) then \(\sum a_n\) is divergent, if \(\left|\frac{a_{n+1}}{a_n}\right|\Rightarrow1\) no decision is possible.
If \(q\), \(n_0\) exist with \(\sqrt[n]{a_n}\le q\lt1\) for \(n\ge n_0\) then \(\sum a_n\) convergent. If \(\sqrt[n]{a_n}\ge q\ge1\) then \(\sum a_n\) divergent. If \(\sqrt[n]{a_n}\to 1\) no decision is possible.
© J. Carstensen (Math for MS)