Nearly all integrals are solved by applying the fundamental theorem of calculus: \begin{eqnarray*}\int\limits_a^b f(x) dx&=& F(b)-F(a)\quad \mbox{where $f(x)=\frac{dF}{dx}$}\\ &=&\left[F(x)\right]_a^b\end{eqnarray*}
\(\Rightarrow\;\) Calculation of integrals\(\;\Leftrightarrow\;\)Finding
function \(F(x)\)
A function \(F\) with the property \(f(x)=\frac{dF}{dx}\)
is called primitive with respect to \(f(x)\).
Plus two rules:
integration by parts
\[\int f(x)g'(x)dx=f(x)g(x)-\int f'(x)g(x) dx\] |
which directly follows from the product rule for calculating derivatives.
substitution:
\[\int f(g(x))g'(x) dx=F(g(x))+C\] |
which directly follows from the chain rule for calculation derivatives.
Integrals: basic rules
|
\(\Rightarrow\;\) basic integrals: \begin{eqnarray*} \int x^n dx&=& \frac{1}{n+1} x^{n+1}+C, n\neq-1\, n\in\mathbb{Z}\\ \int x^r dx&=&\frac{1}{r+1} x^{r+1}+C,\,r\in\mathbb{R}\,\mbox{but } r\neq-1\\ \int \frac{1}{x} dx&=&\ln|x|+C\\ \int e^x dx &=& e^x +C\\ \int\sin x dx&=&-\cos x+C\\ \int\cos x dx&=&\sin x+C\end{eqnarray*}
Example for substitution rule:
\[\int\limits_0^1 x e^{x^2} dx=?\] |
\[\begin{array}{lclcccl} g(x)&=&x^2&\rightarrow&g'(x)&=&2x\\ f(g)&=&e^g&\rightarrow&F(g)&=&e^g\\\\ &&&\rightarrow&\int xe^{x^2}dx&=&\int\frac{1}{2}g'(x)e^{g(x)} dx\\ &&&&&=&\frac{1}{2}e^{x^2}\\ &&&\rightarrow&\int\limits_0^1 xe^{x^2}dx&=&\left[\frac{1}{2}e^{x^2}\right]_0^1=\frac{1}{2}(e-1) \end{array} \] |
© J. Carstensen (Math for MS)