3.4 Sequences and Series

Sequences: $\{a_n\}$ $n = 0, 1, 2, \dots$ $a_n \in \mathbb{R}$ or \mathbb{C} is called a sequence

$$\{a_n\} \xrightarrow{n \to \infty} a$$
 or $\lim_{n \to \infty} a_n = a$ if the sequence converges to a number $a \in \mathbb{R}$

<u>Series</u>: $\{a_n\}$ sequence then $\sum_{n=0}^{\infty} a_n$ is called an infinite series

$$\sum_{n=0}^{\infty} a_n \quad \text{infinite series?} \\ \sum_{n=0}^{N} a_n \quad \text{finite series} = \text{o.k.}$$

If $S_N = \sum_{n=0}^{\infty} a_n$ converges then this means that $\lim_{N \to \infty} S_N = \lim_{N \to \infty} \sum_{n=0}^{N} a_n = \sum_{n=0}^{\infty} a_n = \alpha$ condition: $a_n \to 0$ if $\sum_{n=1}^{\infty} \frac{1}{n} = \infty$!, hence $a_n \to 0$ is not a sufficient condition for a series to converge.

Nearly all theoretical considerations related to the convergence conditions for series rely on the geometrical series:

$$\sum_{n=0}^{\infty} x^n; \qquad a_n = x^n$$

We can use a small trick to calculate the sum

$$S_N = \sum_{n=0}^N x^n.$$

Let us write the sum twice

$$S_N = 1 + x + x^2 + \dots + x^N$$

$$x S_N = x + x^2 + \dots + x^N + x^{N+1}$$

subtracting both lines we get

$$(1-x) S_N = 1 - x^{N+1}$$
 or $S_N = \frac{1-x^{N+1}}{1-x}$

so for |x| < 1 we find

$$\lim_{N \to \infty} S_N = \frac{1}{1 - x}$$

and for $|x|\rangle 1$ the series diverges.

For the geometric series we have two conditions for the components a_n

(

(i)

$$\frac{a_{n+1}}{a_n} = x$$

(ii)
$$\sqrt[n]{a_n} = x$$

These properties allow to specify the conditions to take the geometric series as a majorant for other series leading to the two standard convergence criteria for infinite series:

- (i) If $\sum_{n=0}^{\infty} a_n$ is given and q, n_0 exist with $\left|\frac{a_{n+1}}{a_n}\right| \le q < 1$ for $n \ge n_0$ then $\sum_{n=0}^{\infty} a_n$ is convergent. If $\left|\frac{a_{n+1}}{a_n}\right| \ge q > 1$ then $\sum a_n$ is divergent, if $\left|\frac{a_{n+1}}{a_n}\right| \Rightarrow 1$ no decision is possible.
- (ii) If q, n_0 exist with $\sqrt[n]{a_n} \le q < 1$ for $n \ge n_0$ then $\sum a_n$ convergent. If $\sqrt[n]{a_n} \ge q \ge 1$ then $\sum a_n$ divergent. If $\sqrt[n]{a_n} \to 1$ no decision is possible.