\(f(x)=\left\{\begin{array}{cl}\sin x&0\le x\lt\pi\\0&\pi\le x\lt2\pi\end{array}\right.\;\;\mbox{and periodic continuation}\) |
|
To solve the above integrals we used relations extracted directly from the addition theorems for sin- and cos- functions:
\[\begin{array}{llll} &\sin(\alpha)\cos(\beta) &=& \frac{1}{2}\left(\sin(\alpha-\beta)+ \sin(\alpha+\beta) \right)\\\\ \Rightarrow & \sin(x)\cos(kx) & = & \frac{1}{2}\left(\sin((1-k)x)+ \sin((1+k)x) \right)\\\\ &\sin(\alpha)\sin(\beta) &=& \frac{1}{2}\left(\cos(\alpha-\beta)+ \cos(\alpha+\beta) \right)\\\\ \Rightarrow& \sin(x)\sin(kx) &=& \frac{1}{2}\left(\cos((1-k)x)+ \cos((1+k)x) \right) \end{array}\] |
The following animation shows the Fourier-approximation for \(f(x)=|\sin x|\quad\) up to 6.
© J. Carstensen (Math for MS)