\begin{eqnarray*} f(x)&=&\cos x;\qquad x_0=0\\ f(x)&\approx&\cos0+x(-\sin0)\approx1\\ f(x)&\approx&1-\frac{1}{2}x^2\\ f'(x)&=&-\sin x\rightarrow f''(x)=-\cos x\rightarrow f'''(x)=\sin x\\ & & \qquad \quad \rightarrow f''''(x)=\cos x=f(x)\\ \Rightarrow f(x)&=&\sum_{n=0}^\infty\frac{(-1)^b}{(2n)!}x^{2n}=1-\frac{1}{2!}x^2+\frac{1}{4!}x^4-\ldots\end{eqnarray*} |
Taylor series and their application
© J. Carstensen (Math for MS)