Basic elementary functions as (section 2.3):
\(e^x\), ln \(x\), \(a^x\), log\(_a x\), \(x^n\), \(\sum_{k=0}^K
a_k x^k\)
sin \(x\), cos \(x\), tan \(x\), cot \(x\),
arcsin \(x\), arccos \(x\), arctan \(x\), arccot \(x\)
”Nearly” elementary functions:
sinh \(x\), cosh
\(x\), tanh \(x\), coth \(x\), arsinh \(x\), arcosh \(x\), artanh
\(x\), arcoth \(x\)
Properties of these functions, e.g. \(e^x e^y = e^{x+y}\)
\(\sin(x+y) = \sin x \cos y + \cos x \sin y\)
Calculus of functions with one variable will be briefly recapitulated (see section 3.1), e.g.
\(\frac{d}{dx} \left(x^n \right) = n x^{n-1}\), \(f(x) = x^n\) \(f'(x) = n x^{n-1}\)
\(\int e^{-x} = - e^{-x} + C\)
\(A = \int_0^{\pi} \sin x dx = [-\cos x]_0^{\pi} = - (-1) - (-1) = 2\) (units)
Maximum of \(f(x) = x^5 e^{-x}\) for \(x\gt0\):
\(f'(x) = 5 x^4 e^{-x} - x^5 e^{-x} = e^{-x} x^4 (5-x)\), \(f'(x_m) = 0 \Rightarrow x_m = 5\)
Vector algebra in 3D (see section 2.6)
Adding vectors
\(\vec a + \vec b\) \(\vec a - \vec b = \vec a + (-\vec b)\) \(\vec 0 \equiv\) Zero Vector |
Scalar multiplication: \(\alpha \vec a\) stretching of \(\vec a\) by a factor of \(\alpha\) (real number)
Coordinates:
\(\vec a = \left( \begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array} \right)\), \(\vec 0 = \left( \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right)\), \(\vec b = \left( \begin{array}{c} b_1 \\ b_2 \\ b_3 \end{array} \right)\), \(\vec a \pm \vec b = \left( \begin{array}{c} a_1 \pm b_1 \\ a_2 \pm b_2 \\ a_3 \pm b_3 \end{array} \right)\), \(\alpha \vec a = \left( \begin{array}{c} \alpha a_1 \\ \alpha a_2 \\ \alpha a_3 \end{array} \right)\) |
|
Modulus of vector \(\vec a\)
is its length \(|\vec a| = \sqrt{a_1^2+ a_2^2 + a_3^2}\) |
Dealing with ”Numbers” should be quite familiar, e.g. solving simple
equations:
\(x^2 - 4 x +3 = 0\),
\(\sin(\pi x) = 0\)
Complex functions as vectors of a linear vector space
functions: \(f(x)\) are vectors of linear vector space
scalar product \(\langle f|g \rangle:=\int_{-\infty}^{+\infty}f^*(x)g(x)dx\)
only square integrable, but complex functions (\(x\): real)
functions are parallel, orthonormal, angle between two functions can be calculated
sets of basic functions exist, projections can be calculated, ....
necessary for quantum mechanics
helpful for understanding of Fourier analysis, .....
© J. Carstensen (Math for MS)