functions: \(f(x)\), \(f(x,y,z)\); \(x,y,z\) are variables
derivatives: \(f'(x) = \frac{df(x)}{dx}\)
e.g. \(f(x) = x^2 + a\); \(a\): parameter
trigonometric functions: \(\sin x\), \(\cos x\), \(\tan
x\):
argument always in radians: \( rad = deg * \frac{\pi}{180}\)
\(\sin x\) (no parenthesis necessary), \(\sin(\pi x)\), \(\sin(\pi x + 7)\)
and \(\sin^2 x = (\sin x)^2\), \(\cos^n x = (\cos x)^n\)
vectors: \(\vec{a} = \left( \begin{array}{c} a_1 \\ a_2 \\ a_3 \end{array}\right)\),
\(a = |\vec{a}|\)
\(\vec{a} \cdot \vec{b} = \vec{a} \; \vec{b}\): Scalar
product
\(\vec{a} \; \times \; \vec{b}\) : Vector product
© J. Carstensen (Math for MS)