1.1 Recapitulation of basic requirements

- Basic elementary functions as (section 2.3): e^x , $\ln x$, a^x , $\log_a x$, x^n , $\sum_{k=0}^K a_k x^k$ $\sin x$, $\cos x$, $\tan x$, $\cot x$, $\arcsin x$, $\arccos x$, $\arctan x$, $\operatorname{arccot} x$
- "Nearly" elementary functions: sinh x, cosh x, tanh x, coth x, arsinh x, arcosh x, artanh x, arcoth x
- Properties of these functions, e.g. $e^x e^y = e^{x+y}$ $\sin(x+y) = \sin x \cos y + \cos x \sin y$
- Calculus of functions with one variable will be briefly recapitulated (see section 3.1), e.g.
 - I. $\frac{d}{dx}(x^n) = nx^{n-1}, f(x) = x^n f'(x) = nx^{n-1}$ II. $\int e^{-x} = -e^{-x} + C$ III. $A = \int_0^{\pi} \sin x dx = [-\cos x]_0^{\pi} = -(-1) - (-1) = 2$ (units)

- IV. Maximum of $f(x) = x^5 e^{-x}$ for x > 0: $f'(x) = 5x^4 e^{-x} - x^5 e^{-x} = e^{-x} x^4 (5-x), f'(x_m) = 0 \Rightarrow x_m = 5$
- Vector algebra in 3D (see section 2.6)
 - I. Adding vectors

$$\vec{a} + \vec{b}$$

 $\vec{a} - \vec{b} = \vec{a} + (-\vec{b})$
 $\vec{0} \equiv \text{Zero Vector}$

II. Scalar multiplication: $\alpha \vec{a}$ stretching of \vec{a} by a factor of α (real number)

III. Coordinates:

$$\vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \vec{0} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}, \qquad \qquad Z \land a_1 \\ \vec{a} \pm \vec{b} = \begin{pmatrix} a_1 \pm b_1 \\ a_2 \pm b_2 \\ a_3 \pm b_3 \end{pmatrix}, \alpha \vec{a} = \begin{pmatrix} \alpha a_1 \\ \alpha a_2 \\ \alpha a_3 \end{pmatrix} \qquad \qquad \qquad A_3 \land A_3$$

IV. Modulus of vector \vec{a}

is its length $|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$

- Dealing with "Numbers" should be quite familiar, e.g. solving simple equations: $x^2 4x + 3 = 0$, $\sin(\pi x) = 0$
- Complex functions as vectors of a linear vector space
 - functions: f(x) are vectors of linear vector space
 - scalar product $\langle f|g\rangle := \int_{-\infty}^{+\infty} f^*(x)g(x)dx$
 - only square integrable, but complex functions (x: real)
 - functions are parallel, orthonormal, angle between two functions can be calculated
 - sets of basic functions exist, projections can be calculated,
 - necessary for quantum mechanics
 - helpful for understanding of Fourier analysis,