| | \begin{equation*} \begin{split}
\pi_T = \left( \frac{\partial U}{\partial V}\right)_T = &\;\; \left( \frac{\partial U}{\partial S}\right)_V \left( \frac{\partial
S}{\partial V}\right)_T + \left( \frac{\partial U}{\partial V}\right)_S = T \left( \frac{\partial S}{\partial V}\right)_T
- p = T \left( \frac{\partial p}{\partial T}\right)_V - p \\ p = &\;\; \frac{n\,R\,T}{V - n\,b}-\frac{a\,n^2}{V^2} \quad
\Rightarrow \quad \left( \frac{\partial p}{\partial T}\right)_V = \frac{n\,R}{V - n\,b} \\ \pi_T = \left( \frac{\partial
U}{\partial V}\right)_T = &\;\; T \left( \frac{\partial p}{\partial T}\right)_V - p = \frac{n\,R\,T}{V - n\,b} - \left(\frac{n\,R\,T}{V
- n\,b} - \frac{a\,n^2}{V^2} \right) = \frac{a\,n^2}{V^2}\\ \end{split} \label{eq:dU_dV_vdW} \end{equation*} | (3.66) |