3.28
Maxwell relations, calculation of residual functions
The residual function \(\Gamma^{res}(T,p)\) of a caloric state function
\(\Gamma(T,p)\) is defined as the difference between the real and the ideal state function
| | \begin{equation*} \Gamma(T,p)
= \Gamma^{real}(T,p) = \Gamma^{res}(T,p) + \Gamma^{ideal}(T,p) \label{eq:residual_function} \end{equation*} | (3.67) |
The calculation of the residual function and other thermodynamic properties starts from
the volume-explicit thermal equation of state \(V(T,p,n)\) of a real fluid. As an example we calculate the
residual entropy. Taking into account that for zero pressure all gases/fluids behave ideally and using a Maxwell relation
we start with
| | \begin{equation*} S(T,0) - S^{ideal}(T,0)
= 0 \qquad \left(\frac{\partial S}{\partial p} \right)_T = - \left(\frac{\partial V}{\partial T} \right)_p \qquad \left(\frac{\partial
S^{ideal}}{\partial p} \right)_T = - \left(\frac{\partial V^{ideal}}{\partial T} \right)_p = - \frac{n\,R}{p} \label{eq:S_Sideal}
\end{equation*} | (3.68) |
Using
| | \begin{equation*} S(T,p) = S(T,0)
+ \int_0^p \left(\frac{\partial S}{\partial p} \right)_T dp \label{eq:S_T_p} \end{equation*} | (3.69) |
we find for the residual entropy
| | \begin{equation*} \begin{split}
S^{res}(T,p) = &\;\; S(T,p) - S^{ideal}(T,p)\\ = &\;\; S(T,0) - S^{ideal}(T,0) + \int_0^p \left(\left(\frac{\partial S}{\partial
p} \right)_T -\left(\frac{\partial S^{ideal}}{\partial p} \right)_T \right) dp \\ \Rightarrow S^{res}(T,p) = &\;\; \int_0^p
\left(- \left(\frac{\partial V}{\partial T} \right)_p + \frac{n\,R}{p} \right) dp \\ \end{split} \label{eq:S_res} \end{equation*} | (3.70) |
So no explicit measurements of entropies are necessary to calculate the residual entropy.
The experimentally much more easily accessible \(V(T,p,n)\) relation allows for the complete calculation.
© J. Carstensen (TD Kin I)