3.26
Maxwell relations
The fundamental equations represent exact differentials, e.g.
| | \begin{equation*} dG = V dp - S
dT \quad \mbox{, i.e.} \quad \left(\frac{\partial^2 G}{\partial p \partial T} \right) = \left(\frac{\partial^2 G}{\partial
T \partial p} \right) \quad \mbox{; thus} \quad -\left(\frac{\partial S}{\partial p} \right)_T = \left(\frac{\partial V}{\partial
T} \right)_p \label{eq:Maxwell_G} \end{equation*} | (3.62) |
Generally
| | \begin{equation*} df(x,y) = g dx
+ h dy \quad \mbox{gives} \quad \left(\frac{\partial g}{\partial y} \right)_x = \left(\frac{\partial h}{\partial x} \right)_y
\label{eq:Maxwell_general} \end{equation*} | (3.63) |
So from the other fundamental equations we get further Maxwell relations:
| | \begin{equation*} \begin{split}
\left(\frac{\partial S}{\partial V} \right)_T = &\;\; \left(\frac{\partial p}{\partial T} \right)_V \\ \left(\frac{\partial
T}{\partial V} \right)_S = &\;\; -\left(\frac{\partial p}{\partial S} \right)_V \\ \left(\frac{\partial T}{\partial p} \right)_S
= &\;\; \left(\frac{\partial V}{\partial S} \right)_p \\ \left(\frac{\partial V}{\partial T} \right)_p = &\;\; -\left(\frac{\partial
S}{\partial p} \right)_T \\ \end{split} \label{eq:Maxwell_additional} \end{equation*} | (3.64) |
These Maxwell relations allow for drastic simplification and replacements of difficult-to-measure relations by easy-to-measure
relations and thus contribute strongly to the powerful toolbox of thermodynamics as we will see in some subsequent examples.
© J. Carstensen (TD Kin I)