2.10
\(C_p-C_V\) for perfect gases
Here we will prove a relation for \(C_p - C_V\) which holds for nearly all
solids and liquids and for ideal gases; so we discuss a very general feature of heat capacities. Including the expansion
coefficient \(\alpha\) of Eq. (2.6) in Eq. (2.11) we get
| | \begin{equation*} dU = \pi_T dV
+ C_V dT \quad \Rightarrow \quad \left(\frac{\partial U}{\partial T}\right)_p = \pi_T \left(\frac{\partial V}{\partial T}\right)_p
+ C_V = \pi_T\, \alpha V + C_V \label{eq:dU_TV_3} \end{equation*} | (2.27) |
We learned already:
| | \begin{equation*} \Rightarrow \quad
\left(\frac{\partial U}{\partial T}\right)_p \approx C_V \label{eq:dUdTapprox} \end{equation*} | (2.28) |
| | \begin{equation*} \mbox{Thus using}
\quad \left(\frac{\partial U}{\partial T}\right)_p \approx \left(\frac{\partial U}{\partial T}\right)_V = C_V \quad\mbox{we
get}\quad C_p - C_V = \left(\frac{\partial H}{\partial T}\right)_p - \left(\frac{\partial U}{\partial T}\right)_V \approx
\left(\frac{\partial H}{\partial T}\right)_p - \left(\frac{\partial U}{\partial T}\right)_p \label{eq:Cp-CV_1} \end{equation*} | (2.29) |
| | \begin{equation*} \mbox{i.e.} \quad
C_p - C_V = \left(\frac{\partial (U+pV)}{\partial T}\right)_p - \left(\frac{\partial U}{\partial T}\right)_p = \left(\frac{\partial
(U+n\,R\,T)}{\partial T}\right)_p - \left(\frac{\partial U}{\partial T}\right)_p = n\,R \label{eq:Cp-CV_2} \end{equation*} | (2.30) |
So for many materials the specific heat capacities \(C_p/n\) and \(C_V/n\)
just differ by a constant \(R\).
© J. Carstensen (TD Kin I)