2.2 Addition and Multiplication of complex numbers

Definition 4

\[\begin{array}{c} z_1=a_1+b_1i\\z_2=a_2+b_2i \end{array}\Rightarrow\begin{array}{lcl}\oplus z_1+z_2&=&(a_1+a_2)+(b_1+b_2)i\\ \ominus z_1-z_2&=&z_1+(-z_2)=(a_1-a_2)+(b_1-b_2)i\\ \odot z_1\cdot z_2&=&(a_1+b_1i)(a_2+b_2i)=a_1a_2+b_1a_2i+a_1b_2i+b_1b_2i^2\\ &=&(a_1a_2-b_1b_2)+(a_1b_2+b_1a_2)i\end{array}\]

e.g.:

\[(3+2i)(1-i)=3-3i+2i+2=5-i\]
\begin{eqnarray*} (a+bi)+\overbrace{0}^{0+0i}&=&a+bi\\ (a+bi)\cdot \underbrace{1}_{1+0i}&=&a+bi \end{eqnarray*}

division: meaning of \(\frac{1}{1+i}=?\)

\[\Rightarrow \frac{1}{1+i}=\frac{1-i}{(1+i)(1-i)}=\frac{1-i}{2}=\frac{1}{2}-\frac{1}{2}i\;\;\;\mbox{o.k.}\]

In general:

\[\frac{1}{a+bi}=\frac{a-bi}{a^2+b^2}=\frac{a}{a^2+b^2}+\frac{-b}{a^2+b^2}i\]
\[z=a+bi\rightarrow z\cdot z^{-1}=1\Leftrightarrow z^{-1}=\frac{a}{a^2+b^2}+\frac{-b}{a^2+b^2}i\]

Definition 5 \(\bar{z}=a-bi\) is the conjugate complex number to \(z=a+bi\), other notation \(\bar{z}=z^*\)

Summary:

\[ \begin{array}{lcl} z&=&a+bi\\ \mbox{Re}(z)&=&a\\ \mbox{Im}(z)&=&b\\ \mbox{Re}(\bar{z})&=&a\\ \mbox{Im}(\bar{z})&=&-b \end{array}\Rightarrow \begin{array}{l} \mbox{Re}(z)=\frac{1}{2}(z+\bar{z})\\\\ \mbox{Im}(z)=\frac{1}{2i}(z-\bar{z})\\ \end{array} \]

Rules: \(\quad\overline{\overline{z}}=z\;\;\), \(\;\overline{z_1 + z_2}=\bar{z_1}+\bar{z_2}\;\;\), \(\;\overline{z_1\cdot z_2}=\bar{z_1}\cdot\bar{z_2}\)
”Normal” rules:

order properties:\(\;\;\;2\lt3,\;0\lt1\;\;\) o.k.
but \(\;\;\;i\; {\genfrac{}{}{0pt}{}\gt\lt}\;0?\) \begin{eqnarray*} i\gt0\rightarrow i\cdot i&\gt&0\cdot i=0\rightarrow -1\gt0\quad\wr\\ i\lt0\rightarrow i\cdot i^3&\lt&0\cdot i^3=0\rightarrow 1\lt0\quad\wr \end{eqnarray*}

\(\Rightarrow\) nonsense, complex numbers do not have order at all! (later we will discuss the modulus of z)
Gauß Plane of Numbers

PIC

\(\Rightarrow\) complex numbers are 2D vectors with certain properties

PIC

\begin{eqnarray*} \mbox{Modulus $r=|z|$ and phase $\varphi$} \qquad z&=&(r,\varphi),\\r&=&\sqrt{a^2+b^2},\;r=|z|=\sqrt{z\bar{z}},\\\varphi&=&\arctan\left(\frac{b}{a}\right)\rightarrow\varphi\;\mbox{in radians!!} \end{eqnarray*}

\(z_1\;{\genfrac{}{}{0pt}{}\lt\gt}\;z_2\;\;\) makes no sense, but \(|z_1|\;{\genfrac{}{}{0pt}{}\lt\gt}\;|z_2| \) is fine!
e.g.:\(\;\;z_1=2+i=(\sqrt{5},\arctan(\frac{1}{2}))\) or \(z_2=1+i=(\sqrt{2},\frac{\pi}{4})\)
Geometrical interpretation of \(+\) and \(\cdot\) with complex numbers:


PIC
\begin{eqnarray*} \begin{array}{lcllcl} z_1&=&(r_1,\varphi_1)&z_2&=&(r_2,\varphi_2)\\ &=&a_1+b_1i& &=&a_2+b_2i\\ z_1+z_2&=&\mbox{''Adding 2D vectors''}\\ &&\left(\begin{array}{c}a_1+a_2\\b_1+b_2\end{array}\right)\\ z_1\cdot z_2 & = &(r_1r_2,\varphi_1+\varphi_2)\\ \end{array} \end{eqnarray*}

\(\qquad \hat{=}\) Rotation and stretching of \(z_1\) by \(z_2\)
\(\qquad \Rightarrow\) see later
e.g.: \((1+i)(\frac{1}{2}+\frac{1}{2}i)=(\sqrt{2}\frac{1}{\sqrt{2}},\frac{\pi}{4}+\frac{\pi}{4})=(1,\frac{\pi}{2})=i\)


With frame Back Forward as PDF

© J. Carstensen (Math for MS)