Definition 4
\[\begin{array}{c} z_1=a_1+b_1i\\z_2=a_2+b_2i \end{array}\Rightarrow\begin{array}{lcl}\oplus z_1+z_2&=&(a_1+a_2)+(b_1+b_2)i\\ \ominus z_1-z_2&=&z_1+(-z_2)=(a_1-a_2)+(b_1-b_2)i\\ \odot z_1\cdot z_2&=&(a_1+b_1i)(a_2+b_2i)=a_1a_2+b_1a_2i+a_1b_2i+b_1b_2i^2\\ &=&(a_1a_2-b_1b_2)+(a_1b_2+b_1a_2)i\end{array}\] |
e.g.:
\[(3+2i)(1-i)=3-3i+2i+2=5-i\] |
division: meaning of \(\frac{1}{1+i}=?\)
\[\Rightarrow \frac{1}{1+i}=\frac{1-i}{(1+i)(1-i)}=\frac{1-i}{2}=\frac{1}{2}-\frac{1}{2}i\;\;\;\mbox{o.k.}\] |
In general:
\[\frac{1}{a+bi}=\frac{a-bi}{a^2+b^2}=\frac{a}{a^2+b^2}+\frac{-b}{a^2+b^2}i\] |
\[z=a+bi\rightarrow z\cdot z^{-1}=1\Leftrightarrow z^{-1}=\frac{a}{a^2+b^2}+\frac{-b}{a^2+b^2}i\] |
Definition 5 \(\bar{z}=a-bi\) is the conjugate complex number to \(z=a+bi\), other notation \(\bar{z}=z^*\)
Summary:
\[ \begin{array}{lcl} z&=&a+bi\\ \mbox{Re}(z)&=&a\\ \mbox{Im}(z)&=&b\\ \mbox{Re}(\bar{z})&=&a\\ \mbox{Im}(\bar{z})&=&-b \end{array}\Rightarrow \begin{array}{l} \mbox{Re}(z)=\frac{1}{2}(z+\bar{z})\\\\ \mbox{Im}(z)=\frac{1}{2i}(z-\bar{z})\\ \end{array} \] |
Rules:
\(\quad\overline{\overline{z}}=z\;\;\), \(\;\overline{z_1 + z_2}=\bar{z_1}+\bar{z_2}\;\;\), \(\;\overline{z_1\cdot z_2}=\bar{z_1}\cdot\bar{z_2}\)
”Normal” rules:
commutative law for addition and multiplication \begin{eqnarray*}z_1+z_2&=&z_2+z_1\\z_1z_2&=&z_2z_1\end{eqnarray*}
associative law \(\oplus\odot\) \begin{eqnarray*}z_1+(z_2+z_3)&=&(z_1+z_2)+z_3\\ z_1(z_2z_3)&=&(z_1z_2)z_3\end{eqnarray*}
distributive law \(z_1(z_2+z_3)=z_1z_2+z_1z_3\)
neutral element
\[\begin{array}{cc}\oplus&0\\\odot&1\end{array}\] |
unique solutions \(z_1=v+z_2\;\;\;\Rightarrow\;\;\;(v=z_1-z_2)\)
unique solutions \(z_1=wz_2\;\;\;\Rightarrow\;\;\;(w=z_1/z_2)\)
no ordering
order properties:\(\;\;\;2\lt3,\;0\lt1\;\;\)
o.k.
but \(\;\;\;i\; {\genfrac{}{}{0pt}{}\gt\lt}\;0?\) \begin{eqnarray*}
i\gt0\rightarrow i\cdot i&\gt&0\cdot i=0\rightarrow -1\gt0\quad\wr\\ i\lt0\rightarrow i\cdot i^3&\lt&0\cdot i^3=0\rightarrow
1\lt0\quad\wr \end{eqnarray*}
\(\Rightarrow\) nonsense, complex numbers do not have order at all! (later we will discuss the modulus of z)
Gauß Plane of Numbers
\(\Rightarrow\) complex numbers are 2D vectors with certain properties
\begin{eqnarray*} \mbox{Modulus $r=|z|$ and phase $\varphi$} \qquad z&=&(r,\varphi),\\r&=&\sqrt{a^2+b^2},\;r=|z|=\sqrt{z\bar{z}},\\\varphi&=&\arctan\left(\frac{b}{a}\right)\rightarrow\varphi\;\mbox{in radians!!} \end{eqnarray*}
\(z_1\;{\genfrac{}{}{0pt}{}\lt\gt}\;z_2\;\;\) makes
no sense, but \(|z_1|\;{\genfrac{}{}{0pt}{}\lt\gt}\;|z_2| \) is fine!
e.g.:\(\;\;z_1=2+i=(\sqrt{5},\arctan(\frac{1}{2}))\)
or \(z_2=1+i=(\sqrt{2},\frac{\pi}{4})\)
Geometrical interpretation of \(+\)
and \(\cdot\) with complex numbers:
\begin{eqnarray*} \begin{array}{lcllcl} z_1&=&(r_1,\varphi_1)&z_2&=&(r_2,\varphi_2)\\ &=&a_1+b_1i&
&=&a_2+b_2i\\ z_1+z_2&=&\mbox{''Adding 2D vectors''}\\ &&\left(\begin{array}{c}a_1+a_2\\b_1+b_2\end{array}\right)\\ z_1\cdot
z_2 & = &(r_1r_2,\varphi_1+\varphi_2)\\ \end{array} \end{eqnarray*} \(\qquad
\hat{=}\) Rotation and stretching of \(z_1\) by \(z_2\) |
© J. Carstensen (Math for MS)