2.7 Matrices

Definition 19

\[\tilde{A}=\left(\begin{array}{cccc}a_{11}&a_{12}&\cdots&a_{1N}\\a_{21}&a_{22}&\cdots&a_{2N}\\\vdots&&\ddots&\vdots\\a_{M1}&a_{M2}&\cdots&a_{MN}\end{array}\right)=\left(a_{jk}\right)_{\begin{array}{l}j=1,\ldots,M\\k=1,\ldots,N\end{array}}\quad \mbox{with } a_{jk}\in\mathbb{R}\mbox{ or } \mathbb{C}\]

\(\tilde{A}\) is called a \(M\times N\) matrix, \(M\) rows or lines, \(N\) columns. i.e. vectors are matrices!

The fact that a matrix according to the definition 13 acts as a linear transformation between vectors will be needed later.

Definition 20

\(M\cdot N\) base matrices \(\left(\begin{array}{cccc}1&0&0&\cdots\\0&0&0&\cdots\\&\cdots&&{\ddots}\end{array}\right), \left(\begin{array}{cccc}0&1&0&\cdots\\0&&\cdots&\\&{\cdots}&&{\cdots}\end{array}\right)\), etc.
(not important here, but:) \(\Rightarrow\) Matrices form an \(M\cdot N\) dimensional vector space.

Definition 21 transposed matrix

\[\tilde{A}={\overbrace{\left(a_{jk}\right)}^{M\times N\mbox{ matrix}}}_{\begin{array}{l}\mbox{\scriptsize j=1,$\ldots$,M}\\\mbox{\scriptsize k=1,$\ldots$,N}\end{array}}\;\Rightarrow\;\tilde{A}^\top={\overbrace{\left(a_{kj}\right)}^{N\times M\mbox{ matrix}}}_{\begin{array}{l}\mbox{\scriptsize k=1,$\ldots$,N}\\\mbox{\scriptsize j=1,$\ldots$,M}\end{array}}\]

adjoined matrix:
\(a_{jk}\in\mathbb{C}\;\tilde{A}=\left(a_{jk}\right)\Rightarrow\;\tilde{A}^+=\left(\overline{\tilde{A}}\right)^\top=\left(\bar{a}_{kj}\right)=\left(\overline{\tilde{A}^\top}\right)\)
the \(\bar{} \) ”bar” stands for the complex conjugated:

\[ z = a+i b=r e^{i\varphi}, \qquad \bar{z} = a-i b=r e^{-i\varphi}\]

Examples:

\[\tilde{A}=\left(\begin{array}{ccc}1&2&i\\3&1+i&0\\0&0&2\end{array}\right)\,\Rightarrow\,\tilde{A}^\top=\left(\begin{array}{ccc}1&3&0\\2&1+i&0\\i&0&2\end{array}\right)\quad\tilde{A}^+=\left(\begin{array}{ccc}1&3&0\\2&1-i&0\\-i&0&2\end{array}\right)\]
\[\tilde{A}=\left(\begin{array}{ccc}1&2&3\\4&5&6\end{array}\right)\,\Rightarrow\,\tilde{A}^\top=\left(\begin{array}{cc}1&4\\2&5\\3&6\end{array}\right),\,\left(\tilde{A}+\tilde B \right)^\top=\tilde A^\top+\tilde B^\top,\,\left(\tilde A^\top\right)^\top=\tilde A\]

most important: quadratic matrices, i.e. \(M=N\)

\[\tilde{A}=\left(a_{jk}\right)_{\mbox{\scriptsize $j,k=1,\ldots,N$}}=\underbrace{\left(\begin{array}{ccc}a_{11}&\cdots&a_{1N}\\\vdots&\ddots&\vdots\\a_{N1}&\cdots&a_{NN}\end{array}\right)}_{\begin{array}{l}\mbox{main diagonal elements}\\a_{jk}\mbox{ with } j=k\end{array}}\]

Definition 22 trace of a quadratic matrix: \(\mbox{tr}\left(\tilde A\right)=\sum_{j=1}^N a_{jj}=a_{11}+a_{22}+\ldots+a_{NN}\)
trivial: \(\mbox{tr}\left(\tilde A\right)=\mbox{tr}\left(\tilde{A}^\top\right)\)

2.7.1 Vectors as special matrices
2.7.2 Matrix multiplication commutative?


With frame Back Forward as PDF

© J. Carstensen (Math for MS)