2.7.2 Matrix multiplication commutative?

\[\left.\begin{array}{ccc} \left(\begin{array}{ccc}2&1&0\\1&2&0\\1&1&1\end{array}\right)\left(\begin{array}{ccc}1&0&-1\\0&1&0\\1&1&1\end{array}\right)&=&\left(\begin{array}{ccc}2&1&-2\\1&2&-1\\2&2&0\end{array}\right)\\\\ \left(\begin{array}{ccc}1&0&-1\\0&1&0\\1&1&1\end{array}\right)\left(\begin{array}{ccc}2&1&0\\1&2&0\\1&1&1\end{array}\right)&=&\left(\begin{array}{ccc}1&0&-1\\1&2&0\\4&4&1\end{array}\right)\end{array}\right\}\neq\]

\(\Rightarrow\) This clearly means that the multiplication of matrices is not commutative, i.e.

\[\tilde A\tilde B\neq\tilde B\tilde A \mbox{ in general!!}\]

But at least: \begin{eqnarray*}\tilde A(\tilde B\tilde C)&=&(\tilde A\tilde B)\tilde C \qquad\mbox{associative rule}\\ \mbox {and } \tilde A(\tilde B+\tilde C)&=&\tilde A\tilde B+\tilde A\tilde C\qquad\mbox{ distributive rule}\\ \mbox{but: }(\tilde A+\tilde B)(\tilde A-\tilde B)&=&\tilde A^2-\tilde A\tilde B+\tilde B\tilde A-\tilde B^2\neq\tilde A^2-\tilde B^2\mbox{ in general since $\tilde A\tilde B\neq\tilde B\tilde A$} \end{eqnarray*}

Example:

\[ \begin{array}{cccc} 2\times4&4\times3& &2\times3\\\\ \left(\begin{array}{cccc}5&2&-2&3\\9&2&-3&4\end{array}\right)&\left(\begin{array}{ccc}2&2&2\\-1&3&-5\\16&8&24\\8&0&16\end{array}\right)&=&\left(\begin{array}{ccc}0&0&0\\0&0&0\end{array}\right)\end{array}\]

\(\Rightarrow\) Matrices do have zero divisors (see example)!! Thus, if \(\tilde A\cdot\tilde B=\tilde 0\) and \(\tilde A\neq\tilde 0\) then in general not \(\tilde B=\tilde 0\), and if \(\tilde A\tilde B=\tilde A\tilde C, \tilde A\neq\tilde0\) than not \(\tilde B = \tilde C\)!!! (Example in homework)
Note, that this would be trivial for real or complex numbers \(\Rightarrow\) Matrices are different from numbers (which makes them relevant for quantum mechanics)


With frame With frame as PDF

go to Matrices

© J. Carstensen (Math for MS)