| Da Versetzungslinien beliebig gekrümmt sein können, und darüberhinaus auch Burgersvektoren vorkommen werden, die viel "kleiner" sind als Translationsvektoren des Gitters (z.B. b=a/6[112]), ist eine allgemeinere Definition der Versetzung sinnvoll und notwendig. | |||||
| Voltaterra hat schon 1907 eine kontinuumsmechanische Definition gegeben, deren Übertragung auf ein (damals noch unbekanntes) Kristallgitter sofort zum allg. Begriff der Versetzung führt. | |||||
| Abbildung: Voltaterras 6 Grundverformungen - 3 davon entsprechen der Stufen bzw. Schraubenversetzung | |||||
| Allgemeine Definition einer Versetzung nach Voltaterra | |||||
|
|||||
| 1. (Fiktiver) Schnitt in den Kristall; Die Schnittlinie entspricht dem Linienvektor t der zu bildenden Versetzung | |||||
![]() |
|||||
| 2. Verschieben der beiden Schnittebenen um einen Translationsvektor des Gitters=± Burgersvektor b (Vorzeichen je nach Konvention) | |||||
![]() ![]() |
|||||
| 3. Falls nötig, Material entnehmen oder einfüllen | |||||
![]() |
|||||
| 4. Kristall wieder herstellen durch "Verschweißen" der Schnittflächen | |||||
| Da der Verschiebungsvektor ein Translationsvektor des Gitters
war, passen die Schnittflächen überall außer entlang der
Schnittlinie perfekt zusammen. Es ist ein eindimensionaler Defekt
entstanden - die Versetzung mit Linienvektor=Schnittlinie;
Burgersvektor=Verschiebungsvektor. Aus der Voltaterra-Definition werden weitere Eigenschaften von Versetzungen unmittelbar klar. Die nachfolgende Liste ergänzt, ersetzt oder präzisiert die bereits festgestellten Eigenschaften 1. - 4. |
|||||
| 5. Der Burgersvektor ist für eine gegeben Versetzung überall gleich (dies gilt nicht für den Linienvektor), da es nur eine Verschiebung der Schnittflächen relativ zueinander gibt. | |||||
| 6. Stufen- und Schraubenversetzung (mit einem Winkel(t, b)=90° bzw. 0° zwischen dem Linienvektor t und Burgersvektor b der Versetzung) sind Grenzfälle der allgemeinen gemischten Vesetzung, mit Winkel(t, b)=beliebig. | |||||
| 7. Abbildung: Atomistische Darstellung einer gemischten Versetzung | |||||
![]() |
|||||
| Die rote Kreise symbolisieren Atome unterhalb der Gleitebene,
die blauen Kreise Atome oberhalb der Gleitebene. Im oberen Teil des Bildes
liegt eine Stufenversetzung vor (Linienvektor
t ist senkrecht zum Burgersvektor
b), im unteren Teil eine Schraubenversetzung (t ist
paralell zu b) . Dazwischen gibt es einen kontinuierlichen Übergang
vom Stufen- zum Schraubencharakter der Versetzung. In der Animation ist die Versetzungsbewegung dieser Versetzung zu sehen. Sie läuft aus dem Kristall heraus, d.h. die vorhandene Gleitstufe wird verschwinden. |
|||||
| 8. Der Burgersvektor muß unabhängig vom genauen Verlauf des Burgersumlaufs sein. | |||||
|
|||||
9. Eine Versetzung kann nicht im Inneren eines perfekten Kristalls
enden, sonden nur
|
|||||
| 10. Verformung erfolgt durch Bewegung der Versetzung in der Schnittebene=Gleiten in der Gleitebene, da ein "Weiterschneiden" gleichbedeutend mit einer Bewegung der Versetzung ist. | |||||
| 11. Die Gleitebene wird damit aufgespanntdurch Burgers- und Linienvektor. | |||||
| 12. Der Betrag von b, (b) ist ein Maß für
die "Stärke", d.h. die elastischen Verzerrungen um eine
Versetzung. |
|||||
| Die letzte sehr wichtige Konsequenz aus der Definition der Versetzung ist: | |||||
| 13. An einem Versetzungsknoten ist die Summe der Burgersvektoren=0, vorausgesetzt, alle t-Vektoren zeigen zum Knoten oder vom Knoten weg. | |||||
| Die Begründung (der "Beweis") für 13.kann auf zwei Arten gegeben werden: mit Burgers- Umlauf und mit der Voltaterra-Definition - womit auch die Äquivalenz beider Beschreibungen demonstriert wird. | |||||
| Sbi= 0 an einem Versetzungsknoten aus Burgers-Umlauf: | |||||
Hieraus folgt die Konsequenz: b1=b2 +
b3, oder, bei Umnormierung auf: "Alle t-Vektoren
zeigen auf Knoten." Sbi= 0 im Knoten. |
|||||
| Gilt Sbi= 0 an einem Versetzungsknoten aus der Voltaterra-Definition | |||||
|
|||||
| Einige Folgerungen aus den zuvor genannten Punkten: | |||||
|
|||||
| Gleitebene eines Stufenversetzungsringes=Gleitzylinder | |||||
![]() |
|||||
| Reine Schraubenversetzungen sind auf allen Ebenen gleitfähig | |||||
| Für eindeutige Vorzeichenfestlegung fehlt noch eine Konvention für das Vorzeichen des Linienvektors t sowie die Festlegung des Umlaufsinns des Burgersumlaufs relativ zur Richtung des Linienvektors. Einfache Regeln, die zu einer konsistenten Vorzeichengebung führen sind: | |||||
| Wahl der Vorzeichen der Linienvektoren so, daß was in irgendeinen
Referenzknoten hineinfließt auch wieder herausfließt:
t1=t2 + t3. Bei allen anderen Knoten ist dann diese Bedingung automatisch erfüllt, aber Sb ist ungleich Null. |
|||||
![]() |
|||||
| Burgersumlauf nach Festlegung der Linienrichtung nach "rechter Hand Regel". | |||||
| Burgersumlauf ist geschlossen um Versetzung; Schließungsfehler im Referenzkristall "Finish to Start" ist Burgersvektor b. | |||||
|
|||||
| Es bleiben aber einige Fragen offen; dies läßt sich aus dem obigen Bild begründen: | |||||
| Gibt es auch 4er, 5er, ... -Knoten? | |||||
| Sind die Winkel in einem Knoten beliebig? | |||||
| Was bestimmt mögliche Versetzungsreaktionen, z.B. die Bildung einer neuen Versetzung durch "Wandern" eines Knotens? | |||||
![]() |
|||||
| Zur Klärung müssen wir die Energie einer Versetzung und die Wechselwirkung zwischen Versetzungen wissen. | |||||
| Nochmal zu den Vorzeichen: Es ist sehr
tückisch, man muß aufpassen und besonders immer auf die
Linienrichtung achten. Regel: Vorzeichenwechsel beit heißt Vorzeichenwechsel bei b |
|||||
| Beispiel: Versetzungsring | |||||
| Burgersvektoren an den herausgegriffenen Punkten
offensichtlich entgegengesetzt; aber b überall gleich nach
Voltaterra!?? Lösung: Vorzeichenwechsel bei t an den herausgegriffenen Punkten! |
|||||