3.3 Quantitative approach for changes of T

From Eq. (3.8) we find the van’t Hoff equation

 \begin{equation*} \frac{d \ln K}{dT} = - \frac{1}{R} \frac{d(\Delta_r G^0 / T)}{d T} = \frac{\Delta_r H^0}{R T^2} \quad . \label{vantHoff_1} \end{equation*}(3.11)

Here we used the Gibbs-Helmholtz equation

 \begin{equation*} \frac{\partial G}{\partial T} = - S = \frac{G-H}{T} \quad \mbox{resp.} \quad \frac{\partial (G/T)}{\partial T} = \frac{1}{T} \frac{\partial G}{\partial T} + G \frac{d (1/T)}{d T} = \frac{1}{T} \left( -S - \frac{G}{T} \right)= - \frac{H}{T^2} \end{equation*}(3.12)

A second representation of the van’t Hoff equation directly extracted from Eq. (3.11) is

 \begin{equation*} \frac{d \ln K}{d(1/T)} = - \frac{\Delta_r H^0}{R} \quad . \label{vantHoff_2} \end{equation*}(3.13)

As illustrated in Fig. 3.1 b) the Arrhenius-like plot allows to extract reaction enthalpies from the slope of the curve \(\ln K\) vs. \(1 / T\).


With frame Back Forward as PDF

© J. Carstensen (TD Kin II)