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From Eq. (3.8) we find the van’t Hoff equation
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Here we used the Gibbs-Helmholtz equation
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A second representation of the van’t Hoff equation directly extracted from Eq. (3.11) is
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As illustrated in Fig. 3.1 b) the Arrhenius-like plot allows to extract reaction enthalpies from the slope of the curve
lnK vs. 1/T .
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� Assuming Kirchhoff’s law
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and taking the Taylor expansion
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Eq. (3.11) translates into
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and finally the integration gives
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where I is an additional integration constant determined by a measurement of K at one temperature.


