| | \begin{equation*} \begin{split}
p & = n R T \left(\frac{1}{V} + \frac{n\,B}{V^2} + \frac{n^2\,C}{V^3} + \cdots \right) \quad \text{, i.e.}\\ w & = -\int_{V_1}^{V_2}p
dV = -n R T \left[\int_{V_1}^{V_2} \frac{dV}{V} + n B \int_{V_1}^{V_2} \frac{dV}{V^2} + n^2 C \int_{V_1}^{V_2} \frac{dV}{V^3}
+ \cdots \right] \quad \Rightarrow \\ w & = -n R T \left[\ln \frac{V_2}{V_1} - n B \left(\frac{1}{V_2}-\frac{1}{V_1} \right)
-\frac{1}{2}n^2 C \left(\frac{1}{V_2^2}-\frac{1}{V_1^2} \right) + \cdots\right]\\ \end{split} \label{eq:w_Leiden} \end{equation*} | (2.17) |