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2.6.1 Work of reversible isothermal expansion

Using the Leiden form of the virial approach in Eq. (1.10) we get
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The first term of w represents the work of a perfect gas; for the following discussion we will neglect the third term.
For an expansion 1/V2 − 1/V1 is negative. We already know that B(T ) is positive at high T and negative at low
T , i.e. at high T we find an increase of the expansion work and at low T a decrease of the expansion work for real
gases compared to perfect gases. Thus repulsive forces must be dominant at high T .
We can get a corresponding result using the vdW equation (1.12) for analyzing work contributions
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So for a reversible compression we find w < w0 for bRT < a and w > w0 for bRT > a, i.e. if attractive exceed
repulsive forces (a > bRT ) the compression of a vdW gas needs less work compared to a perfect gas. While w0

scales with n the interaction term in linear order scales with n2. This is a must, since at least two particles are
needed for any interaction and n2 is the essential part for the probability of two particles to meet.


