1.11.2 vdW equation and Leiden form

According to Eq. (1.10) the Leiden form of the virial coefficients is

 \begin{equation*} p = \frac{RT}{V_m} \left(1 + \frac{B}{V_m} + \frac{C}{V_m^2} + \cdots \right) \label{eq:p_Leiden} \end{equation*}(1.22)

According to Eq. (1.12) the pressure can be written as

 \begin{equation*} p=\frac{RT}{V_m-b}-\frac{a}{V_m^2} \approx \frac{RT}{V_m} \left(1 + \frac{1}{V_m} \left( b - \frac{a}{RT}\right) +\frac{b^2}{V_m^2} \right) \label{eq:p_vdW} \end{equation*}(1.23)

Here we have used the property of the geometrical series

 \begin{equation*} \frac{1}{1-x}=1 + x + x^2 + \cdots \label{eq:geom_series} \end{equation*}(1.24)

Comparing the coefficients of Eq. (1.22) and Eq. (1.23) we get

 \begin{equation*} B = b - \frac{a}{RT} \quad \mbox{and} \quad C = b^2 \label{eq:vdW_vs_Leiden} \end{equation*}(1.25)

Since \(B\) contains two terms with opposite sign we find the expected behavior:


With frame With frame as PDF

go to Maxwell construction and subcritical isotherms

© J. Carstensen (TD Kin I)