As a last example we will discuss parallel reactions of reactions of different order.
| \begin{equation*} \begin{split} A &\xrightarrow{k_1} B \quad \mbox{first order}\\ A &\xrightarrow{k_2} C \quad \mbox{second order}\\ \end{split} \end{equation*} | (6.44) |
| \begin{equation*} \begin{split} \frac{dA}{dt}&= - k_1\, A - k_2\, A^2 = - A\,(k_1+k_2\,A)\\ \frac{dB}{dt}&= k_1\, A \\ \frac{dC}{dt}&= k_2\, A^2 \\ \end{split} \end{equation*} | (6.45) |
Solving for \(A(t)\) we get
| \begin{equation*} \frac{1}{A(t)}=\frac{1}{A_0}\left[\exp(k_1\,t)\left(1+\frac{k_2\,A_0}{k_1}\right)-\frac{k_2\,A_0}{k_1}\right] \label{eq:A_par_1_2_sol} \end{equation*} | (6.47) |
Analyzing the limiting cases we get
for \(k_1 \gg k_2\,A_0\)
| \begin{equation*} \frac{1}{A(t)}=\frac{1}{A_0}\exp(k_1\,t) \quad \mbox{i.e.} \quad A(t) = A_0 \, \exp(-k_1\,t) \label{eq:A_par_1_2_sol_lim1} \end{equation*} | (6.48) |
which is the solution for a simple first order reaction.
for \(k_1 \ll k_2\,A_0\) we simplify
| \begin{equation*} \exp(k_1\,t) \approx 1 + k_1\,t \quad . \end{equation*} | (6.49) |
Including this into Eq. (6.47) we find
which is the solution for a simple second order reaction as shown in the table in section 6.2.
![]() |
![]() |
![]() |
![]() |
© J. Carstensen (TD Kin I)