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6.6 Parallel reactions

As a last example we will discuss parallel reactions of reactions of different order.

A
k1−→ B first order

A
k2−→ C second order

(6.44)

So the set of differential equations is
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Having solved the differential equation for A(t), the functions B(t) and C(t) are just found by integration. Sepa-
rating the variables we get for the first differential equation
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Solving for A(t) we get
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Analyzing the limiting cases we get

� for k1 ≫ k2A0
1
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exp(k1 t) i.e. A(t) = A0 exp(−k1 t) (6.48)

which is the solution for a simple first order reaction.

� for k1 ≪ k2A0 we simplify
exp(k1 t) ≈ 1 + k1 t . (6.49)

Including this into Eq. (6.47) we find
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which is the solution for a simple second order reaction as shown in the table in section 6.2.


