To quantify osmosis we start from the equilibrium condition
| \begin{equation*} \mu_A^*(p)=\mu_A(solution,p+\pi) =\mu_A^*(p+\pi) + R\,T\, \ln a_A \label{eq:osmosis_eq_2} \end{equation*} | (5.47) |
To calculate \(\mu_A^*(p+\pi)\) we use the pressure dependence of \(G_{A,m}\)
Rewriting Eq. (5.50) we get the van’t Hoff equation
| \begin{equation*} \pi = \frac{n_B}{V_{A}^*} \,R \,T = \frac{m_B}{M_B\,V_{A}^*} \,R \,T = \frac{\,R \,T}{M_B} \frac{m_B}{V_{A}^*}= \frac{\,R \,T}{M_B} c_B \label{eq:osmosis_eq_5} \end{equation*} | (5.51) |
here \(c_B\) is a modified concentration in [g/cm\(^3\)].
Measuring the osmotic pressure \(\pi\) as a hydrostatic pressure \(\rho_A\,
g\, h\) (\(\rho_A\): density of the solvent) we get a generalization of Eq. (5.51) by a virial approach
![]() |
![]() |
![]() |
![]() |
© J. Carstensen (TD Kin I)