5.15 Quantification of osmosis (ideal systems): Van’t Hoff equation

To quantify osmosis we start from the equilibrium condition

 \begin{equation*} \mu_A^*(p)=\mu_A(solution,p+\pi) =\mu_A^*(p+\pi) + R\,T\, \ln a_A \label{eq:osmosis_eq_2} \end{equation*}(5.47)

To calculate \(\mu_A^*(p+\pi)\) we use the pressure dependence of \(G_{A,m}\)

 \begin{equation*} \begin{split} \left(\frac{\partial \mu_A^*}{\partial p} \right)_T &=\;\;\left(\frac{\partial G_{A,m}}{\partial p} \right)_T = V_{A,m}^* \quad \Rightarrow \quad \int_p^{p+\pi} d\mu_A^* = \int_p^{p+\pi} V_{A,m}^* dp\\ \mu_A^*(p+\pi) &=\;\; \mu_A^*(p) + V_{A,m}^* \int_p^{p+\pi}dp = \mu_A^*(p) + V_{A,m}^*\;\pi \quad \mbox{assuming $V_{A,m}^*$ independent of $p$}\\ \end{split} \label{eq:osmosis_mu_p} \end{equation*}(5.48)
Including this result into the equilibrium condition of Eq. (5.47) we find

 \begin{equation*} \begin{split} \mu_A^*(p) &=\;\;\mu_A(solution,p+\pi) + R\,T\, \ln a_A = \mu_A^*(p) + V_{A,m}^*\;\pi + R\,T\, \ln a_A \\ \Rightarrow - V_{A,m}^*\;\pi &=\;\; R\,T\, \ln a_A\\ \end{split} \label{eq:osmosis_eq_3} \end{equation*}(5.49)
i.e. the activity of the solvent can be determined from measurements of \(\pi\).
Using the approximations for Raoult’s standard state applied to \(R\,T\, \ln a_A\) we get

 \begin{equation*} \begin{split} R\,T\, \ln a_A &\approx\;\; R\,T\, \ln x_A = R\,T\, \ln (1-x_B) \approx - R\,T\, x_B = - R\,T\, \frac{n_B}{n_A+n_B} \approx - R\,T\, \frac{n_B}{n_A}\\ \Rightarrow - \pi \;V_{A,m}^* &= -\pi \frac{V_{A}^*}{n_A} = \;\; R\,T\, \ln a_A \approx - R\,T\, \frac{n_B}{n_A} \quad \Rightarrow \quad \pi V_{A}^* = n_B \,R \,T\\ \end{split} \label{eq:osmosis_eq_4} \end{equation*}(5.50)

PIC

Figure 5.14: Representation of measured data according to Eq. (5.52).

Rewriting Eq. (5.50) we get the van’t Hoff equation

 \begin{equation*} \pi = \frac{n_B}{V_{A}^*} \,R \,T = \frac{m_B}{M_B\,V_{A}^*} \,R \,T = \frac{\,R \,T}{M_B} \frac{m_B}{V_{A}^*}= \frac{\,R \,T}{M_B} c_B \label{eq:osmosis_eq_5} \end{equation*}(5.51)

here \(c_B\) is a modified concentration in [g/cm\(^3\)].
Measuring the osmotic pressure \(\pi\) as a hydrostatic pressure \(\rho_A\, g\, h\) (\(\rho_A\): density of the solvent) we get a generalization of Eq. (5.51) by a virial approach

 \begin{equation*} \begin{split} \pi = \rho_A \,g\, h &=\;\; \frac{\,R \,T}{M_B} c_B \left(1 + \frac{B\, c_B}{M_B} + \cdots \right) \\ \Rightarrow \quad \frac{h}{c_B} & =\;\;\frac{R\,T}{\rho_A\, g\, M_B} + \left( \frac{R\,T\,B }{\rho_A\, g\, M_B^2} \right)\, c_B \, + \cdots \end{split} \label{eq:osmosis_eq_6} \end{equation*}(5.52)
Plotting of \(h/c_B\) against \(c_B\) typically gives a straight line as shown in Fig. 5.14 . The extrapolation of this line to \(c_B = 0\) allows to calculate \(R\,T\,/\rho_A\,g\,M_B\) and thus finally \(M_B\). The \(B\) parameter contains additional information about the intermolecular interactions.


With frame Back Forward as PDF

© J. Carstensen (TD Kin I)