3.30
\(C_p-C_V\): general relation
Starting from
| | \begin{equation*} dU= T dS - p
dV \quad \mbox{i.e.} \quad \left(\frac{\partial U}{\partial V}\right)_T = T \left(\frac{\partial S}{\partial V}\right)_T
- p = T \left(\frac{\partial p}{\partial T}\right)_V - p \label{eq:dpdT} \end{equation*} | (3.74) |
where we have used the corresponding Maxwell relation, we get
| | \begin{equation*} \begin{split}
C_p - C_V = &\;\; \left(\frac{\partial H}{\partial T}\right)_p - \left(\frac{\partial U}{\partial T}\right)_V \;\;= \;\;
\left(\frac{\partial \left(U + p\,V\right)}{\partial T}\right)_p - \left(\frac{\partial U}{\partial T}\right)_V\\ = &\;\;
\left(\frac{ \left(\frac{\partial U}{\partial T}\right)_V \partial T + \left(\frac{\partial U}{\partial V}\right)_T \partial
V + p \partial V }{\partial T} \right)_p - \left(\frac{\partial U}{\partial T}\right)_V \\ = &\;\; \left(\frac{\partial
U}{\partial T}\right)_V + \left[\left( \frac{\partial U }{\partial V} \right)_T + p \right] \left( \frac{\partial V }{\partial
T} \right)_p - \left(\frac{\partial U}{\partial T}\right)_V \;\;=\;\; T \left(\frac{\partial p}{\partial T}\right)_V \left(
\frac{\partial V }{\partial T} \right)_p\\ \end{split} \label{eq:Cp-CV_3} \end{equation*} | (3.75) |
Using the definitions of the thermal expansion coefficient and the isothermal compressibility
and applying the chain rule we find
| | \begin{equation*} \alpha = \frac{1}{V}\left(
\frac{\partial V }{\partial T} \right)_p \qquad \kappa = - \frac{1}{V}\left(\frac{\partial V}{\partial p}\right)_T \quad
\mbox{and}\quad \left( \frac{\partial p }{\partial T} \right)_V = - \frac{\left( \frac{\partial V }{\partial T} \right)_p}{\left(\frac{\partial
V}{\partial p}\right)_T} = \frac{\alpha}{\kappa} \label{eq:dp_dT} \end{equation*} | (3.76) |
Including this in Eq. (3.75) we finally get
| | \begin{equation*} C_p - C_V =
T \, V \, \frac{\alpha^2}{\kappa} \label{eq:Cp-CV_4} \end{equation*} | (3.77) |
© J. Carstensen (TD Kin I)