We now will investigate systems for which the one particle energy is written as
| \begin{equation*} E(\vec{\xi}) = \sum_{i,j=1}^{s} a_{ij}\xi_i\xi_j \mbox{(bilinear form)} \qquad . \end{equation*} | (3.10) |
This function is homogeneous of second order, i.e.:
| \begin{equation*} \sum_{j=1}^{s} \xi_j \frac{\partial E}{\partial \xi_j} = 2 E \qquad . \end{equation*} | (3.11) |
For classical particles the Boltzmann approximation holds:
| \begin{equation*} f(E,T) = \frac{\exp\left(-\frac{E}{k T} \right)}{Z} \qquad . \end{equation*} | (3.12) |
For the inner energy we find:
For the norm we find:
| \begin{equation*} 1 = \iiint \frac{\exp\left(-\frac{E(\vec{\xi})}{k T} \right)}{Z} d\xi_1 ... d\xi_s \qquad . \end{equation*} | (3.14) |
Finally we get
| \begin{equation*} U = \frac{-k T}{2 Z} \sum_{j=1}^{s} \iiint \xi_j \frac{\partial}{\partial \xi_j} \left[ \exp\left(-\frac{E}{k T} \right)\right] d\xi_1 ... d\xi_s \qquad , \end{equation*} | (3.15) |
and after partial integration:
The first term vanishes at the boundaries, the second one is the partition function; thus we find
| \begin{equation*} U = \frac{k T}{2} s \qquad . \end{equation*} | (3.17) |
Independent of the special form of the energy function each degree of freedom adds \(0.5 kT\) to the inner energy of the system.
The specific heat capacity is
| \begin{equation*} C = \frac{k}{2} s \qquad , \end{equation*} | (3.18) |
independent of the temperature.
![]() |
![]() |
![]() |
![]() |
© J. Carstensen (Stat. Meth.)