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3.3 The equipartition law of classical thermodynamics

We now will investigate systems for which the one particle energy is written as

B = Z a;;€;&; (bilinear form) . (3.10)

i,7=1

This function is homogeneous of second order, i.e.:
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For classical particles the Boltzmann approximation holds:
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For the inner energy we find:
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For the norm we find: ;
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Finally we get
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and after partial integration:
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The first term vanishes at the boundaries, the second one is the partition function; thus we find

Jj=1
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Independent of the special form of the energy function each degree of freedom adds 0.5k7 to the inner energy of
the system.
The specific heat capacity is

o=ty (3.18)

independent of the temperature.



