|    |  
 
  |  
The entropy of mixing thus is  |  
  |   |  
 
   
  | S  |   = k · ln  |  
N!  n! · (N – n)!  |  
 = k ·  |   æ  è 
 |  
ln N!  –  ln {n! · (N – n)!} |  
 ö  ø   |    = k · |  
 æ  è  |  
ln N!  –  ln n!  –  ln (N – n)! |  
 ö  ø  |    
 
  |    
 
  |  
  |  
  |  
We now can write down the free enthalpy for a crystal of N atoms 
containing n vacancies |  
  |  
 |   
   
  | G(n)  |   =   |   
n · GF  –   |  
kT · [ln N!  –  ln n!  –  ln (N – 
n)!] |    
 
  |    
 
  |  
 
  |  
Now we need to find the minimum of G(n) by setting dG(n)/dn 
= 0 and for that we must differentiate factorials. We will not do this directly (how would you do it?), but use suitable approximations 
as outlined in subchapter 2.1. |  
  |  
  |  
Mathematical approximation: Use the simplest version of the Stirling 
formula  |  
  |   |  
 
  |  
  |  
  |  
Physical approximation, assuming that there are far fewer vacancies than atoms: |  
  |   |  
 
   
   
   n  N  –  n  |  
 »   |  
 n  N  |   =   |  
cV  =  |      |  
concentration  of vacancies |    
 
  |    
 
  |  
   |  
Now all that is left is some trivial math (with some pitfalls, however!). The links lead to 
an appendix explaining some of the possible problems. |  
  |  
  |  
Essentially we need to consider dS(n)/dn using the Stirling formula 
 |  
  |   |   
   
  dSn  dn  |  
 =  k ·  |   d  dn |  
 æ  è  |  
ln N!  –  ln n!  –  ln (N – n)! 
 |   ö  ø  |  
 » k ·  |  
d  dn |  
 æ  è   |  
N · ln N  –  n · ln n  –  (N 
– n) · ln (N – n) |  
 ö  ø  |    
 
  |    
 
  |  
   |  
But we must not yet use the physical approximation, even so 
its tempting! With the formula for taking the derivative of products we obtain  |  
  |   |   
   
  dSn  dn  |  
 »  k ·  |  
 æ  ç  è  |  
 æ  è  |  
(– ln n  –   |  n  
n |   ö  ø  |  
 –  |   æ  è  |  
– ln ( N – n)  +  |  
 n – N  N – n |  
 ö  ø  |  
 · (– 1) |  
  ö  ÷  ø  |    
 
   
  dSn  dn  |  
 » – k ·  |   
 æ  è  |  
ln n + 1  –  ln (N – n) – 1 |  
 ö  ø  |  
 =  – k ·  |  
 æ  è  |  
ln n  –  ln (N – n) |  
 ö  ø  |  
 =  – k · ln |  n  
N  –  n |    
 
  |    
 
  |  
  |  
  |  
Now we can use the physical approximation and obtain |  
  |  
 |   
  |  
   |  
Putting everything together gives |  
  |  
 |   
   
  dG(n)  dn  |  
 = 0  = GF  –  T  ·   |  
 dSn  dn  |  
  |  
 = GF  +  kT · ln cV |    
 
  |    
 
  |  
  |  
  |  
Reshuffling for cV gives the final result |  
 
 |   |   
  |  
  |  
  |  
q.e.d. |  
  |  
  |  
 
 
  |  
Here are a few hints and problems in dealing with faculties and approximations. |  
 
  |  
Having 
n << N,  i.e. n/(N – n) » 
n/N = cV = concentration of vacancies does not allow 
us to approximate d/dn{(N – n) · ln (N – 
n)} by simply doing  d/dn{N · lnN} = 0. |  
  |  
  |  
This is so because d/dn gives the change 
of N – n with n and that not only might be 
large even if n << N, but will be large because N 
is essentially constant and the only change comes from n. |  
 
  |  
The derivative of u(x) · v(x) 
is: d/dx(u · 
v) = du/dx · v(x) + dv/dx · u(x). |  
  |  
  |  
The derivative of ln x is: d/dx(lnx) = 1/x |  
 
  |  
Easy mistake: Don't forget the inner 
derivative, it produces an important minus sign:  |  
  |   |  
 
   
  d   dn |  
 æ  ç  è  |  
 ln (N  –  n) |   
 ö  ÷  ø  |   =   |  
1  N  –  n |  
 ·  |  
d(N  –  n)  dn |  
  =   |  1  
N  –  n |   · (–1 ) |  
  
 
  |    
 
  |  
 
© H. Föll (Defects - Script)