With \(m_+ = \nu_+ m_B\), and \(m_-=\nu_-m_B\) we get from Eq. (2.13)
| \begin{equation*} a_B = \left(\gamma_\pm\left(\frac{m_\pm}{m^0}\right)\right)^\nu = \gamma_\pm^\nu \frac{(\nu_+m_B)^{\nu+}(\nu_-m_B)^{\nu-}}{(m^0)^\nu} \quad . \label{act_2} \end{equation*} | (2.14) |
\(\text{NaCl}\):
| \begin{equation*} a_{\text{NaCl}} = a_{\text{Na}+}a_{\text{Cl}-} = \gamma_\pm^2 \frac{(m_{\text{NaCl}})^2}{(m^0)^2} \quad . \label{act_NaCl} \end{equation*} | (2.15) |
\(\text{Fe}(\text{ClO}_4)_3\):
Thus the key-point is always how to calculate (or measure) \(\gamma_\pm\).
Chemical potential and activity of ionic solutions/salts
© J. Carstensen (TD Kin II)