Maximize
| \begin{equation*} S' = -k \sum_i p_i \ln(p_i) \end{equation*} | (5.40) |
with the restrictions
| \begin{equation*} 0 = \sum_i p_i - 1 \;\mbox{, and} \quad 0 = \sum_i p_i U_i - U\;\mbox{, and} \quad 0 = \sum_i p_i N_i - N \quad . \end{equation*} | (5.41) |
Introducing the Lagrange parameters \(\alpha\), \(\beta\), and \(\gamma\) the variation of the function
| \begin{equation*} \delta \left[ S' - k \alpha \left( \sum_i p_i -1 \right) - k \beta \left( \sum_i p_i U_i - U \right) - k \gamma \left( \sum_i p_i N_i - N \right) \right] = 0 \end{equation*} | (5.42) |
without restrictions leads to
| \begin{equation*} - \ln(p_i) - 1 - \alpha - \beta U_i - \gamma N_i = 0 \qquad . \end{equation*} | (5.43) |
Defining
| \begin{equation*} \frac{1}{Z} = \exp(- 1 - \alpha) \end{equation*} | (5.44) |
we find
| \begin{equation*} p_i = \frac{1}{Z} \exp(-\beta U_i - \gamma N_i) \qquad . \end{equation*} | (5.45) |
Taking into account the first restriction one gets
| \begin{equation*} Z(\beta, V, \gamma) = \sum_i \exp(-\beta U_i - \gamma N_i) \qquad . \label{eq_Z_GC} \end{equation*} | (5.46) |
Finally we get
| \begin{equation*} S = k \ln(Z) + \beta k U + \gamma k N \qquad . \label{S__1} \end{equation*} | (5.47) |
Just by comparison we see
and
Thus the total derivative is:
| \begin{equation*} S=S(V,N,U) \end{equation*} | (5.51) |
and \(S\) is the Legendre transformed of
\(k \ln(Z)\).
From classical thermodynamics it is well known that
So by comparison with Eq. (5.50) we see
| \begin{equation*} \beta = \frac{1}{kT} \quad \mbox{, and} \quad \gamma = -\frac{\mu}{kT} \qquad . \end{equation*} | (5.53) |
Multiplying Eq. (5.47) with \(T\) we find
| \begin{equation*} \Omega = U - \mu N- T S \label{eq_Omega_GC_1} \end{equation*} | (5.54) |
and
| \begin{equation*} \Omega(T,V,\mu) = -k T \ln(Z(T, V, \mu)) \qquad . \label{eq_Omega_GC_2} \end{equation*} | (5.55) |
![]() |
![]() |
![]() |
![]() |
© J. Carstensen (TD Kin II)