The free energy is the corresponding thermodynamic potential for the thermal contact of
section 3.15.
Therefore
the corresponding coordinates are \(V, N\), and \(T\).
It is well known that
| \begin{equation*} F(V,N,T) = U(V,N,T) - S(V,N,T) T \end{equation*} | (3.32) |
and
| \begin{equation*} dF = \mu dN - p dV - S dT \label{eq:dF} \end{equation*} | (3.33) |
Mathematical interpretation: total differential, partial derivative
\(\left.\frac{\partial F}{\partial N}\right|_{V,T}= \mu\) | \(\left.\frac{\partial F}{\partial V}\right|_{N,T}= - p\) | \(\left.\frac{\partial F}{\partial T}\right|_{V,N}= - S\) |
Physical interpretation: gradient, forces
\(\mu\): ”force” changing the particle number | \(-p\): ”force” changing the volume | \(-S\): ”force” changing the temperature |
here: | \(V, N, T\): | generalized coordinates |
\(-p, \mu, -S\): | generalized forces |
![]() |
![]() |
![]() |
![]() |
© J. Carstensen (TD Kin I)