5.7 The pn-junction

The concept

The equations
For a systematic description we define the (electrical) potentials

 \begin{equation*} \psi:=-\frac{E_i}{q} \quad \mbox{and} \quad \Phi:=-\frac{\mu^*}{q} \qquad . \end{equation*}(5.44)

Now we can write the charge densities as

 \begin{equation*} n = n_i \exp\left( \frac{q(\psi -\Phi_n)}{k T}\right) \quad \mbox{and} \quad p = n_i \exp\left( \frac{q(\Phi_p -\psi)}{k T}\right) \qquad . \end{equation*}(5.45)

Correspondingly we get

 \begin{equation*} \Phi_n = \psi - \frac{kT}{q} \ln\left(\frac{n}{n_i} \right) \quad \mbox{and} \quad \Phi_p = \psi + \frac{kT}{q} \ln\left(\frac{p}{n_i} \right) \qquad , \end{equation*}(5.46)

i.e. it resembles the Nernst equation resp. the properties of an ideal classical gas.
The mass action law applies for non equilibrium too:

 \begin{equation*} n p = n_i^2 \exp\left(\frac{q(\Phi_p - \Phi_n)}{k T}\right) \end{equation*}(5.47)

and for the integral current (electrical + diffusion) we find

 \begin{equation*} \begin{split} \vec{J}_n & = q \mu_n \left(n \vec{E} +\frac{k T}{q} \vec{\nabla} n \right) \\ & = q \mu_n n (-\vec{\nabla} \psi ) + q \mu_n \frac{k T}{q} \left[\frac{q n}{kT}\left(\vec{\nabla} \psi - \vec{\nabla} \Phi_n\right) \right] \\ & = - q \mu_n n \vec{\nabla} \Phi_n \end{split} \end{equation*}(5.48)
and correspondingly

 \begin{equation*} \vec{J}_p = - q \mu_p p \vec{\nabla} \Phi_p \qquad . \end{equation*}(5.49)

The following images illustrate the effect of current flow on the quasi-Fermi-energies in forward and reversed direction:

PIC

Energy band diagram: (a) forward direction (b) reversed direction.

PIC

Carrier distribution and current densities (linear plots) for (a) forward biased condition and (b) reversed biased condition.

PIC

Carrier concentration and potentials for a pn junction operated at different current densities. (a) 10 A/cm\(^{2}\); (b) 10\(^{3}\) A/cm\(^{2}\); (c) 10\(^{4}\) A/cm\(^{2}\).


With frame Back Forward as PDF

© J. Carstensen (Stat. Meth.)