For non degenerated semiconductors we can take the relation
| \begin{equation*} n_e = n_i \exp\left(- \frac{E_i-\mu^*}{kT} \right) \qquad , \end{equation*} | (5.39) |
or after transformation
| \begin{equation*} \mu^* = E_i + k T \ln \left(\frac{n_e}{n_i} \right) \qquad . \end{equation*} | (5.40) |
\(E_i\) is the energy in the middle of the band.
So we find
| \begin{equation*} \vec{\nabla} \mu^* = k T \frac{\vec{\nabla} n_e}{n_e} \qquad . \end{equation*} | (5.41) |
Neglecting electrical fields the second term in Eq. (5.34) is written as
| \begin{equation*} \vec{j}_{diff} = - k T \mu_e \vec{\nabla}n_e = - q D \vec{\nabla}n_e \label{j_diff} \qquad . \end{equation*} | (5.42) |
Comparing the left and the right hand side of Eq. (5.42) we get the Einstein relation
| \begin{equation*} D = \frac{k T}{q} \mu_e \qquad . \end{equation*} | (5.43) |
Local gradients in the quasi Fermi potential cause the diffusion transport
Local gradients are induced by external perturbations
Diffusion is the response to this perturbations
![]() |
![]() |
![]() |
![]() |
© J. Carstensen (Stat. Meth.)