3.9 Specific heat capacity of the free electron gas (Fermions)

We again apply the Eq. (3.7) to (3.9) for the calculation of the particle number and the energy:

 \begin{equation*} N(T,V,\mu) = \int_{-\infty}^{+\infty} D(\epsilon) f_{\beta \mu}(\epsilon) d\epsilon \end{equation*}(3.46)

and

 \begin{equation*} E(T,V,\mu) = \int_{-\infty}^{+\infty} \epsilon D(\epsilon) f_{\beta \mu}(\epsilon) d\epsilon \qquad . \end{equation*}(3.47)

\(f_{\beta \mu}(\epsilon)\) is the Fermi statistics; obviously we find:

 \begin{equation*} N(T,V,\mu) = \int_{-\infty}^{+\infty} D(\epsilon) f_{\beta \mu}(\epsilon) d\epsilon = \int_{-\infty}^{\epsilon_F} D(\epsilon) d\epsilon \label{n_electron} \end{equation*}(3.48)

Multiplying both sides of Eq. (3.48) with \(\epsilon_F\) we get

 \begin{equation*} \left(\int_{-\infty}^{\epsilon_F} + \int_{\epsilon_F}^{+\infty}\right) \epsilon_F D(\epsilon) f_{\beta \mu}(\epsilon) d\epsilon = \int_{-\infty}^{\epsilon_F} \epsilon_F D(\epsilon) d\epsilon \label{int_int} \end{equation*}(3.49)

Since we calculate the derivation with respect to temperature, we can subtract a constant from the inner energy.
We get

 \begin{equation*} \Delta U = \int_{-\infty}^{+\infty} \epsilon D(\epsilon) f_{\beta \mu}(\epsilon) d\epsilon - \int_{-\infty}^{\epsilon_F} \epsilon_F D(\epsilon) d \epsilon \label{du_int} \end{equation*}(3.50)

Combining the equations (3.49) and (3.50) we find

 \begin{equation*} \Delta U = \int_{\epsilon_F}^{+\infty} (\epsilon - \epsilon_F) D(\epsilon) f_{\beta \mu}(\epsilon) d\epsilon - \int_{-\infty}^{\epsilon_F} (\epsilon - \epsilon_F) \left(1-f_{\beta \mu}(\epsilon) \right) D(\epsilon) d\epsilon \qquad . \end{equation*}(3.51)

The first term describes the excitation of an electron from the energy \(\epsilon_F\) to \(\epsilon\) and the second term the excitation from \(\epsilon\) to \(\epsilon_F\).
Finally we get

 \begin{equation*} c = \frac{d\Delta U}{dT} = \int_{-\infty}^{+\infty} (\epsilon - \epsilon_F) D(\epsilon) \frac{\partial f_{\beta \mu}(\epsilon)}{\partial T} d\epsilon \qquad . \end{equation*}(3.52)

Only around the Fermi energy \(\frac{\partial f_{\beta \mu}(\epsilon)}{\partial T}\) differs from zero; we therefor substitute \(D(\epsilon)\) by \(D(\epsilon_F)\) and take

 \begin{equation*} x := \frac{\epsilon - \epsilon_F}{k T} \qquad , \end{equation*}(3.53)

leading to

 \begin{equation*} c \approx k^2 T D(\epsilon_F) \int_{-\infty}^{+\infty} \frac{x^2 e^x}{\left( e^x+1 \right)^2} dx = \frac{\pi^2}{3} D(\epsilon_F) k^2 T \qquad , \end{equation*}(3.54)

Since for free electrons

 \begin{equation*} N(\epsilon) = const. * \epsilon^{\frac{3}{2}} \qquad , \end{equation*}(3.55)

we get

 \begin{equation*} \frac{\partial N}{ \partial \epsilon} = const. * \frac{3}{2} \epsilon^{\frac{1}{2}} = \frac{3}{2}\frac{N}{\epsilon} \qquad . \end{equation*}(3.56)

Therefore

 \begin{equation*} D(\epsilon_F) = \frac{3 N}{2 \epsilon_F} = \frac{3 N}{2 k T_F} \qquad , \end{equation*}(3.57)

and

 \begin{equation*} c = \frac{\pi^2}{2} N k \frac{T}{T_F} \qquad . \end{equation*}(3.58)

For room temperature and a typical Fermi temperature of several \(1000^o\)K follows

 \begin{equation*} c \approx \frac{1}{100} N k \qquad . \end{equation*}(3.59)

Thus at room temperature the heat capacity of electrons is not important.


With frame Back Forward as PDF

© J. Carstensen (Stat. Meth.)