Maximize
| \begin{equation*} S' = -k \sum_i p_i \ln(p_i) \end{equation*} | (2.25) |
with the restrictions
| \begin{equation*} 0 = \sum_i p_i U_i -U \quad \mbox{, and} \quad 0 = \sum_i p_i - 1 \quad \mbox{, and} \quad 0 = \sum_i p_i N_i - N \quad . \end{equation*} | (2.26) |
Introducing the Lagrange parameters \(\alpha\), \(\beta\), and \(\gamma\) the variation of the function
| \begin{equation*} \delta \left[ S' - k \alpha \left( \sum_i p_i -1 \right) - k \beta \left( \sum_i p_i U_i - U \right) - k \gamma \left( \sum_i p_i N_i - N \right) \right] = 0 \end{equation*} | (2.27) |
without restrictions leads to
| \begin{equation*} - \ln(p_i) - 1 - \alpha - \beta U_i - \gamma N_i = 0 \qquad . \end{equation*} | (2.28) |
Defining again
| \begin{equation*} \frac{1}{Z} = \exp(- 1 - \alpha) \end{equation*} | (2.29) |
we find
| \begin{equation*} p_i = \frac{1}{Z} \exp(-\beta U_i - \gamma N_i) \quad \mbox{and} \quad Z(\beta, V, \gamma) = \sum_i \exp(-\beta U_i - \gamma N_i) \quad . \end{equation*} | (2.30) |
We get
and
i.e.
| \begin{equation*} S = k \ln(Z) + \beta k U + \gamma k N \qquad . \end{equation*} | (2.33) |
The total derivative is:
| \begin{equation*} S=S(V,N,U) \end{equation*} | (2.35) |
and \(S\) is the Legendre transformed of \(k \ln(Z)\).
Let
| \begin{equation*} \left( \frac{\partial S}{\partial U}\right) := \frac{1}{T} \quad \mbox{and} \quad \left( \frac{\partial S}{\partial N}\right) := - \frac{\mu}{T} \quad . \end{equation*} | (2.36) |
So
| \begin{equation*} \beta = \frac{1}{kT} \quad \mbox{, and} \quad \gamma = -\frac{\mu}{kT} \quad . \end{equation*} | (2.37) |
Following again the procedure for the calculation of the free energy we find
| \begin{equation*} \Omega = U - \mu N- T S \end{equation*} | (2.38) |
and
| \begin{equation*} \Omega(T,V,\mu) = -k T \ln(Z(T, V, \mu)) \qquad . \end{equation*} | (2.39) |
© J. Carstensen (Stat. Meth.)