The Energy-Operator: Hamilton Operator, Hamiltonian
| \begin{equation*} A|\psi\rangle = \frac{\hbar}{i}\frac{\partial}{\partial t} |\psi\rangle = E \psi\rangle \label{time_ev_op} \end{equation*} | (2.7) |
| \begin{equation*} \mbox{Eigenvector:} \qquad e^{i\omega t} \label{energy_eigenvector} \end{equation*} | (2.8) |
| \begin{equation*} \mbox{Eigenvalue:} \qquad E = \hbar \omega \label{energy_eigenvalue} \end{equation*} | (2.9) |
A synonym for the Hamilton Operator is time evolution operator. The meaning of this expression
will be explained later.
The Momentum-Operator:
| \begin{equation*} A|\psi\rangle = P_x |\psi\rangle = \frac{\hbar}{i}\frac{\partial}{\partial x} |\psi\rangle = p_x |\psi\rangle \end{equation*} | (2.10) |
| \begin{equation*} \mbox{Eigenvector:} \qquad e^{i k_x x} \end{equation*} | (2.11) |
| \begin{equation*} \mbox{Eigenvalue:} \qquad p_x = \hbar k_x \end{equation*} | (2.12) |
The Eigenstates are plane waves. In this representation the Eigenvectors just show the space
dependence. Since according to Eq. (2.9)
each state has a time dependence, we find that each Momentum-Eigenvector reflects the properties of a plane wave.
The wave length is
| \begin{equation*} \lambda = \frac{2 \pi}{|k_x|} \end{equation*} | (2.13) |
| \begin{equation*} A|\psi\rangle = X |\psi\rangle = x |\psi\rangle = a |\psi\rangle \end{equation*} | (2.14) |
i.e we find
| \begin{equation*} (x - a) |\psi\rangle = 0 \end{equation*} | (2.15) |
For \(x \neq a\) follows \( |\psi\rangle = 0\). In order to get a state, which can be normalized, we must set:
| \begin{equation*} |\psi\rangle = \delta(x-a) \end{equation*} | (2.16) |
Thus we find for the expectation value of the space operator:
| \begin{equation*} P(x) dx = ||\psi||^2 dx \end{equation*} | (2.18) |
is obviously the probability for finding a particle in the interval \((x, x+dx)\).
© J. Carstensen (Quantum Mech.)