1.3 The linear Hermitian operator

A linear operator \(A\) is called Hermitian, if:

 \begin{equation*} \langle x|Ay\rangle = \langle Ax|y\rangle = \langle x|A|y\rangle \qquad \mbox{(Bra ..... Ket)} \end{equation*}(1.11)

The third notation is used to point out the symmetry of the first equality.
Examples:
Hermitian matrices:
Applying the above definition to a matrix, we find:

 \begin{equation*} |Ab\rangle _i = \sum_j A_{i,j}b_j \qquad \mbox{and} \qquad |Aa\rangle _i = \sum_j A_{i,j}a_j \end{equation*}(1.12)

With

 \begin{equation*} \langle Aa|_i = \sum_j A_{i,j}^*a_j^* \end{equation*}(1.13)

follows

 \begin{equation*} \langle a|Ab\rangle = \sum_{i,j} a_i^*A_{i,j}b_j \qquad \mbox{and} \qquad \langle Aa|b\rangle = \sum_{i,j} a_j^*A_{i,j}^*b_j \label{sym_A} \end{equation*}(1.14)

For Hermitian matrices we find according to Eq. (1.14):

 \begin{equation*} A_{i,j} =A_{j,i}^* \end{equation*}(1.15)

Multiplication with x
In this case

 \begin{equation*} \langle f|Ag\rangle = \langle Af|g\rangle = \langle f|A|g\rangle \end{equation*}(1.16)

is written as

 \begin{equation*} \int_{-\infty}^{+\infty} f^*(x)xg(x) dx = \int_{-\infty}^{+\infty} x^*f^*(x)g(x) dx \end{equation*}(1.17)

Since \(x\) is a real value, the multiplication with \(x\) is a Hermitian operator.

The differential operator
As proofed by the following calculation, the differential operator is not Hermitian. We thus choose the correct operator

 \begin{equation*} Af= i \frac{d}{dx}f \qquad \mbox{$i$: imaginary unit} \end{equation*}(1.18)

We find:

 \begin{equation*} \begin{split} \langle f|Ag\rangle & = \\ \int\limits_{-\infty}^{+\infty} f^*(x) i \frac{dg}{dx}(x) dx & = i f^*(x)g(x) \Big{|}_{- \infty}^{+ \infty} - i \int\limits_{-\infty}^{+\infty} \frac{df^*}{dx}(x) g(x) dx \\ & = \int\limits_{-\infty}^{+\infty} i^*\frac{df^*}{dx}(x) g(x) dx \\ & = \langle Af|g\rangle \end{split} \end{equation*}(1.19)
The partial integration gives a ”boundary term”. This term is zero, because \(f\) and \(g\) must be square integrable and thus are zero for large and ”small” \(x\)-values.
The \(i\) leading the differential operator compensates for the minus sign which occurs in the second term after partial integration.


With frame Back Forward as PDF

© J. Carstensen (Quantum Mech.)