4.7 Applying the LCAO method to s-band electrons

We now evaluate Eq. (4.40) for one atomic s-orbital with the energy \(E_s\). Therefore we define the integrals

 \begin{equation*} \beta = - \int dV \Delta U(\vec{r}) ||\psi(\vec{r})||^2 \label{lcao_beta} \end{equation*}(4.44)

 \begin{equation*} \alpha(\vec{R}) = - \int dV \psi^*(\vec{r}) \psi(\vec{r}-\vec{R}) \label{lcao_alpha} \end{equation*}(4.45)

 \begin{equation*} \gamma(\vec{R}) = - \int dV \psi^*(\vec{r}) \Delta U(\vec{r}) \psi(\vec{r}-\vec{R}) \label{lcao_gamma} \end{equation*}(4.46)

Using this integrals we find

 \begin{equation*} \epsilon(\vec{k}) = E_s - \frac{\beta + \sum \gamma(\vec{R}) e^{i \vec{k}\vec{R}}} {1+ \sum \alpha(\vec{R}) e^{i \vec{k}\vec{R}}} \label{lcao_s} \end{equation*}(4.47)

The integrals (4.44)-(4.46) can be simplified extremely taking into account the symmetries of s-orbitals:
Since we only discuss s-levels, we can always choose \(\Phi(\vec{r})\) real and it’s value depends only on the length \(r\). Consequently we find

 \begin{equation*} \alpha(-\vec{R}) = \alpha(\vec{R}) \label{lcao_alpha_sym} \end{equation*}(4.48)

The inversion symmetry of the Bravais lattices gives

 \begin{equation*} \Delta U (-\vec{r}) = \Delta U(\vec{r}) \label{lcao_u_sym} \end{equation*}(4.49)

leading to

 \begin{equation*} \gamma(-\vec{R}) = \gamma(\vec{R}) \label{lcao_gamma_sym} \end{equation*}(4.50)

Neglecting even in a further approximation \(\alpha\) completely and summing only over nearest neighbor (n.n.-) atoms we find

 \begin{equation*} \epsilon(\vec{k}) = E_s - \beta - \sum\limits_{n.n.} \gamma(\vec{R}) \cos\left(\vec{k}\vec{R} \right) \label{lcao_s_band} \end{equation*}(4.51)

Example: In an fcc-lattice each atom has 12 nearest neighbors at

 \begin{equation*} \vec{R} = \frac{a}{2} (\pm 1, \pm 1,0), \qquad \vec{R} = \frac{a}{2} (\pm 1,0, \pm 1),\qquad \vec{R} = \frac{a}{2} (0 \pm 1, \pm 1)\qquad . \label{fcc_r} \end{equation*}(4.52)

For \(\vec{k} = (k_x, k_y, k_z)\) we find for the 12 values of the scalar product

 \begin{equation*} \vec{k} \vec{R} = \frac{a}{2} \left(\pm k_i \pm k_j \right) \qquad i,\,j = x,\,y;\; y,\,z;\; z,\,x \end{equation*}(4.53)

Since \(\Delta U (\vec{r}) = \Delta U(x,y,z)\) displays the full cubic symmetry, we find no changes in the argument when permutating the parameters \(x\), \(y\), and \(z\). In addition we have the radial dependence \(\Phi(\vec{r}) = \Phi(r)\) leading to \(\gamma(\vec{r}) = \gamma\) for all permutations of the indices. Summing up we find (after some trivial but time consuming calculations)

 \begin{equation*} \epsilon(\vec{k}) = E_s -\beta - 4\gamma \left\{ \cos\left(\frac{a}{2}k_x\right)\cos\left(\frac{a}{2}k_y\right) + \cos\left(\frac{a}{2}k_y\right)\cos\left(\frac{a}{2}k_z\right) + \cos\left(\frac{a}{2}k_z\right)\cos\left(\frac{a}{2}k_x\right) \right\}\label{lcao_gamma_s1} \end{equation*}(4.54)

and

 \begin{equation*} \gamma = - \int dV \Phi^*(x,y,z) \Delta U(x,y,z) \Phi(x-\frac{a}{2},y-\frac{a}{2},z) \qquad . \label{lcao_gamma_s2} \end{equation*}(4.55)

Equation (4.55) demonstrates
The characteristics of the ”Tight-Binding” approach

3) The quantum mechanical point of view

Only after we have answered all these questions we can calculate the ground state of a solid, i.e. the properties of the ideal undisturbed solid when no forces and excitations are applied. We need concepts to decide when and how to use energy bands as a starting point for additional forces applied to our system.


With frame Back Forward as PDF

© J. Carstensen (Quantum Mech.)