4.2 Functions of more than one variable

General case: \(N\) variables and \(M\) components

\[\vec{f}:\mathbb{R}^N\rightarrow\mathbb{R}^M\qquad\vec{x}=\vect{x_1\\x_2\\x_3\\\vdots\\x_N}\rightarrow\,\vect{f_1(x_1,\ldots,x_N)\\f_2(x_1,\ldots,x_N)\\\vdots\\f_M(x_1,\ldots,x_N)}=\underbrace{\vec{f}}_{\mbox{$M$-D-vector}}(\overbrace{\vec{x}}^{\mbox{$N$-D-vector}})\]

Examples:

  1. Combination of circle and straight line \(f:\mathbb{R}^2\quad\Rightarrow \quad \mathbb{R}^3\) \begin{eqnarray*} \vect{t_1\\t_2}&\Rightarrow&\vect{a\cos t_1\\a\sin t_1\\c t_2}\rightarrow\mbox{complicated function}\\ &&\left.\begin{array}{c}a\cos t_1\\a\sin t_1\end{array}\right\}\quad \mbox{circle, and }\quad c t_2\sim \mbox{a line}\end{eqnarray*}

  2. Electric field as point sources at \(\vect{0\\0\\0}:\vec{E}:\mathbb{R}^3\rightarrow\mathbb{R}^3\)

    \[\vec{E}(x,y,z)=\frac{q}{ 4 \pi \epsilon_0 (x^2+y^2+z^2)^{\frac{3}{2}} }\vect{x\\y\\z}=\vect{\frac{q}{4\pi\epsilon_0}\frac{x}{(\ldots)^{\frac{3}{2}}}\\\frac{q}{4\pi\epsilon_0}\frac{y}{(\ldots)^{\frac{3}{2}}}\\\frac{q}{4\pi\epsilon_0}\frac{z}{(\ldots)^{\frac{3}{2}}}}=\vect{E_x\\E_y\\E_z}\]
  3. Modulus function: \(\quad f:\mathbb{R}^N\quad\rightarrow\quad\mathbb{R}^1=\mathbb{R}\)

    \[\vect{x_1\\\vdots\\x_N}\quad\rightarrow\quad\left(x_1^2+x_2^2+\ldots+x_n^2\right)^{\frac{1}{2}}=f(x_1,\ldots,x_N)\]
  4. Electric field, time dependent:

    \[\vec{E}(x,y,z,t)=\vect{E_x(x,y,z,t)\\E_y(x,y,z,t)\\E_z(x,y,z,t)}\quad\vec{E}:\mathbb{R}^4\rightarrow\mathbb{R}^3\]


With frame Back Forward as PDF

© J. Carstensen (Math for MS)