22 Advanced properties of mixing

2.3.1 Debye-Hiickel: The electrical potential of ions in solution

The starting point for the calculation is the Coulomb potential of ions in the solvent. For an isolated ion with
charge z;e in a medium of permittivity € at a distance r holds
z;e Z;

®,; = =— ,with Z; =
dmer r

Z;€

(2.20)
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The "ideal case” for a salt M, X,,_ is that all ions have their actual position but without taking into account the
Coulomb interaction. Thus the electrical work w, is

we = Gy — G = vy (g — plfh) v (o — pident) (2.21)
From Eq. (2.10) we write _ ‘
py — pfet = po = pt** = RTlnyy (2.22)
leading to
We .
InyL = “RT with v=vi4+v_ . (2.23)

This equation implies that we ”first” must find the final distribution of ions and then the work of charging them
in that distribution. Since in turn the final distribution depends on the work of charging, this seems to be an
impossible task. The standard way to solve such problems are self consistent solutions. For this we introduce
a new parameter rp (Debye length) and a modified Coulomb potential which takes explicitly into account the
shielding effect of surrounding charges, i.e. the shielded Coulomb potential:

Zi o,
;= Zemr/ro (2.24)
T

Fig. 2.4 shows examples of this shielded electrical potential for different Debye length.
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Figure 2.4: Shielded Coulomb potential for different Debye length’s . A: no shielding (rp = o0), B: low shielding
(rp = 0.1 nm), C: strong shielding (rp = 0.01 nm)

The value of rp is not known in advance but will be calculated ”self consistently”, i.e. to fulfill all relevant physical
laws /restrictions. The self consistent solution is found from the Poisson equation which couples charge densities p
to electrical potentials via

Ad=-" (2.25)
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Here A is the laplacian which for spherical symmetry can be written as

0? 0? 0? 1d /[ ,d
-t t e () (2:26)
Combining Eq. (2.24) and Eq. (2.25) we finally get
Pi 1d qu)i
P Ap, = 2
€ or2dr (7“ dr
1 d 2 d (Z; —r/rp 1d 2 Zi —r/rp Zi —r/Tp
_Ld(.d(Z _1lad _Z _ 4 2.9
r2 dr (T dr < r ¢ r2 dr " rze rDre (2.27)
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i.e.

E(I)i (7")
pi(r)
Still we have not solved our problem because we need a further equation relating the charge densities and (Coulomb)

energies. For an ion with charge z;e the energy within an electrical potential is given by

2 = — (2.28)

E(r) = zje®;(r) . (2.29)

Thus according to the Boltzmann distribution the ratio between the molar concentration c¢; and the molar concen-
tration in the bulk c? (where the Coulomb energy is zero) is

Cj — —zje@ zje(I)i
_ —EY_ B L RO R L 2.30
0 eXp(kT) eXp( kT ) kT (2.30)
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The charge density p at a distance r from the ion ¢ is the concentration of each type of ions multiplied by the
charge per moles of ions

pi = Nae(cyzy +c_z_) =F(cyzp +c_z_)

0 —z1e®; 0 —z_ed;
= Feizsexp ( kT ) e ew ( KT > (2.31)
D, _ed;
~Fclzy + Fez — (ch-z-‘r z;eT -+ chz_zl;;) + ..
Here we introduced the Faraday constant F' = eN4. Due to overall charge neutrality F c?err + Fc® z_ = 0. Using

e = F/Na, Nak = R, and ¢ = mp (p: density of solution) we finally get

F29, F?9;
Pi=—"pr (925 +c222) ~ — T (mS23 +m%z%)p . (2.32)

Introducing the ionic strength (cf. Eq. (2.18)) Eq. (2.32) can be rewritten as

F29,
pi=—pr 2Im%p . (2.33)
Including this into Eq. (2.28) we get
eRT
"D =N\ 2pF2Imd 239

So rp decreases with increasing I; thus rp decreases with increasing concentration and charge of ions inside the
ionic atmosphere (more shielding), and rp increases with e and 7' (ionic atmosphere becomes more diffuse). The
following table shows examples for Debye length’s for several concentration and charge numbers.

¢ [mol/1] rp(1-1) [nm] rp(1-2) [nm] rp(2-2) [nm] rp(1-3) [nm]
0.1 0.96 0.55 0.48 0.39
0.01 3.04 1.76 1.52 1.42
0.001 9.6 5.55 4.81 3.93
0.0001 30.4 17.6 15.2 124

To calculate the activity we have to calculate the electric work of charging the central ion when being surrounded
by its atmosphere ®,4,,0s. This is the potential difference between the total potential (cf. Eq. (2.24)) and the
potential due to the central ion itself (i.e. the ideal case)

erip 1
Dytmos =Z; - . 2.
mnlr) =2 (- 1) (2.35)

The potential at the central ion (at = 0) is obtained by taking the limit r — 0, i.e.
Zi q

(I)a mos 0)=——=— . 2.36
tmos(0) D 4dmerp ( )
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Thus the potential of the ionic atmosphere is equivalent to the potential arising from a single charge of equivalent
magnitude but opposite sign to that of the central ion and located at a distance rp from the ion. The work of
adding a charge dq to the central ion is

dwe = Paimos(0)dg . (2.37)

Thus the total molar work for fully charging the ion is

zie NA zie NAZ-262 F2Z-2
e =N D utmos(0)dg = — dg = — L = — t . 2.38
v A/O tmos(0)dg 4dmerp Jo 194 8merp 8merp Ny ( )
Using Eq. (2.23) we find
ViWey +v_we.  F2(v322 +v_22)
1 = = . 2.39
n(vz) vRT 8mevrp N4 RT ( )
As already mentioned due to charge neutrality holds
Vizy +v_z_ = 0 . (240)
Multiplying Eq. (2.40) with z; we find
vizi tvozyzo =0 . (2.41)
Multiplying Eq. (2.40) with z_ we find
viziz v z2 =0 . (2.42)
Adding Eq. (2.41) and Eq. (2.42) we get
V+zi ‘v iz Hvpziz +v_z2 =0, (2.43)
leading to
vizi vzt = —(vp +v)zpas =vlzpe| (2.44)
and giving
2 2 2 P2 -
In(ys) = - ek v-22) | FPlese ] (2.45)
8mevrp N4 RT 8merp NaRT
Including the definition for the final result for rp of Eq. (2.34) we get
E3 0
log(y+) = — |z 2] P VT=-— |2y 2 | AVT (2.46)
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which proves Eq. (2.17).



