
22 Advanced properties of mixing

2.3.1 Debye-Hückel: The electrical potential of ions in solution

The starting point for the calculation is the Coulomb potential of ions in the solvent. For an isolated ion with
charge zie in a medium of permittivity ϵ at a distance r holds

Φci =
zie

4πϵr
=

Zi

r
, with Zi =

zie

4πϵ
. (2.20)

The ”ideal case” for a salt Mν+
Xν− is that all ions have their actual position but without taking into account the

Coulomb interaction. Thus the electrical work we is

we = Gm −Gideal
m = ν+(µ+ − µideal

+ ) + ν−(µ− − µideal
− ) . (2.21)

From Eq. (2.10) we write
µ+ − µideal

+ = µ− − µideal
− = RT ln γ± , (2.22)

leading to

ln γ± =
we

νRT
, with ν = ν+ + ν− . (2.23)

This equation implies that we ”first” must find the final distribution of ions and then the work of charging them
in that distribution. Since in turn the final distribution depends on the work of charging, this seems to be an
impossible task. The standard way to solve such problems are self consistent solutions. For this we introduce
a new parameter rD (Debye length) and a modified Coulomb potential which takes explicitly into account the
shielding effect of surrounding charges, i.e. the shielded Coulomb potential:

Φi =
Zi

r
e−r/rD . (2.24)

Fig. 2.4 shows examples of this shielded electrical potential for different Debye length.

Figure 2.4: Shielded Coulomb potential for different Debye length’s rD. A: no shielding (rD =∞), B: low shielding
(rD = 0.1 nm), C: strong shielding (rD = 0.01 nm)

The value of rD is not known in advance but will be calculated ”self consistently”, i.e. to fulfill all relevant physical
laws/restrictions. The self consistent solution is found from the Poisson equation which couples charge densities ρ
to electrical potentials via

∆Φ = −ρ

ϵ
. (2.25)

Here ∆ is the laplacian which for spherical symmetry can be written as
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)
. (2.26)

Combining Eq. (2.24) and Eq. (2.25) we finally get
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(2.27)
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i.e.

r2D = −ϵΦi(r)

ρi(r)
. (2.28)

Still we have not solved our problem because we need a further equation relating the charge densities and (Coulomb)
energies. For an ion with charge zje the energy within an electrical potential is given by

E(r) = zjeΦi(r) . (2.29)

Thus according to the Boltzmann distribution the ratio between the molar concentration cj and the molar concen-
tration in the bulk c0j (where the Coulomb energy is zero) is

cj
c0j

= exp

(
−E
kT

)
= exp

(
−zjeΦi

kT

)
≈ 1− zjeΦi

kT
. (2.30)

The charge density ρ at a distance r from the ion i is the concentration of each type of ions multiplied by the
charge per moles of ions

ρi = NAe (c+z+ + c−z−) = F (c+z+ + c−z−)

= Fc0+z+ exp

(
−z+eΦi

kT

)
+ Fc0−z− exp

(
−z−eΦi

kT

)
≈ Fc0+z+ + Fc0−z− −

(
Fc0+z+

z+eΦi

kT
+ Fc0−z−

z−eΦi

kT

)
+ ... .

(2.31)

Here we introduced the Faraday constant F = eNA. Due to overall charge neutrality Fc0+z+ + Fc0−z− = 0. Using
e = F/NA, NAk = R, and c ≈ mρ (ρ: density of solution) we finally get

ρi = −
F 2Φi

RT

(
c0+z

2
+ + c0−z

2
−
)
≈ −F 2Φi

RT

(
m0

+z
2
+ +m0

−z
2
−
)
ρ . (2.32)

Introducing the ionic strength (cf. Eq. (2.18)) Eq. (2.32) can be rewritten as

ρi = −
F 2Φi

RT
2Im0ρ . (2.33)

Including this into Eq. (2.28) we get

rD =

√
ϵRT

2ρF 2Im0
. (2.34)

So rD decreases with increasing I; thus rD decreases with increasing concentration and charge of ions inside the
ionic atmosphere (more shielding), and rD increases with ϵ and T (ionic atmosphere becomes more diffuse). The
following table shows examples for Debye length’s for several concentration and charge numbers.

c [mol/l] rD(1-1) [nm] rD(1-2) [nm] rD(2-2) [nm] rD(1-3) [nm]

0.1 0.96 0.55 0.48 0.39

0.01 3.04 1.76 1.52 1.42

0.001 9.6 5.55 4.81 3.93

0.0001 30.4 17.6 15.2 12.4

To calculate the activity we have to calculate the electric work of charging the central ion when being surrounded
by its atmosphere Φatmos. This is the potential difference between the total potential (cf. Eq. (2.24)) and the
potential due to the central ion itself (i.e. the ideal case)

Φatmos(r) = Zi

(
e−r/rD

r
− 1

r

)
. (2.35)

The potential at the central ion (at r = 0) is obtained by taking the limit r → 0, i.e.

Φatmos(0) = −
Zi

rD
= − q

4πϵrD
. (2.36)
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Thus the potential of the ionic atmosphere is equivalent to the potential arising from a single charge of equivalent
magnitude but opposite sign to that of the central ion and located at a distance rD from the ion. The work of
adding a charge dq to the central ion is

dwe = Φatmos(0)dq . (2.37)

Thus the total molar work for fully charging the ion is

we = NA

∫ zie

0

Φatmos(0)dq = − NA

4πϵrD

∫ zie

0

qdq = −NAz
2
i e

2

8πϵrD
= − F 2z2i

8πϵrDNA
. (2.38)

Using Eq. (2.23) we find

ln(γ±) =
ν+we+ + ν−we−

νRT
=

F 2
(
ν+z

2
+ + ν−z

2
−
)

8πϵνrDNART
. (2.39)

As already mentioned due to charge neutrality holds

ν+z+ + ν−z− = 0 . (2.40)

Multiplying Eq. (2.40) with z+ we find
ν+z

2
+ + ν−z+z− = 0 . (2.41)

Multiplying Eq. (2.40) with z− we find
ν+z+z− + ν−z

2
− = 0 . (2.42)

Adding Eq. (2.41) and Eq. (2.42) we get

ν+z
2
+ + ν−z+z− + ν+z+z− + ν−z

2
− = 0 , (2.43)

leading to
ν+z

2
+ + ν−z

2
− = −(ν+ + ν−)z+z− = ν |z+z−| , (2.44)

and giving

ln(γ±) = −
F 2
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ν+z

2
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2
−
)

8πϵνrDNART
= − F 2 |z+z−|

8πϵrDNART
. (2.45)

Including the definition for the final result for rD of Eq. (2.34) we get

log(γ±) = − |z+z−|
F 3

4π ln(10)

√
ρm0

2ϵ3R3T 3

√
I = − |z+z−|A

√
I , (2.46)

which proves Eq. (2.17).


