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We now will investigate systems for which the one particle energy is written as
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This function is homogeneous of second order, i.e.
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Nearly all types of kinetic energy and many types of potential energy like that of a harmonic oscillator are written

as a bilinear form of Eq. (5.73), i.e. are homogeneous of second order.

For classical particles the Boltzmann approximation holds:
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Thus we find for the inner energy
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For the norm we find:
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and after partial integration:

Therefore we get finally
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The first term vanishes at the boundaries, the second one is the partition function; thus we find

U= %s . (5.80)

Independent of the special form of the energy function each degree of freedom adds 0.5kT to the inner energy of

the system.

The specific heat capacity is
k

independent of the temperature. This is the famous equipartition law of classical thermodynamics.



