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1.4 Free classical particles: The ideal gas

”Free particles” implies that there exists no interaction between the particles, i.e. only the kinetic energy has to be
taken into account. The system of classical particles with such properties is very famous: the ideal gas! The molar
volume for an ideal gas is Vm = RT/p. For constant T and N we have dGm = Vmdp leading to

Gm(pf ) = Gm(pi) +

∫ pf

pi

Vmdp = Gm(pi) +RT

∫ pf

pi

1

p
dp = Gm(pi) +RT ln

pf
pi

, (1.29)

respectively

µ = µ0 +RT ln
p

p0
, (1.30)

where µ0 is the standard chemical potential at 1 bar (p0).
We now discuss mixing two ideal gases A and B, i.e. there is no interaction neither between A-A and B-B nor
between A-B. At fixed temperature T (dT = 0) and pressure p (dp = 0) under the special condition that the ratio
nA/nB respectively dnA/dnB stays constant the chemical potentials are fix, i.e. µA = const., µB = const.. Taking
into account that

∂G

∂nA
= µA ,

∂G

∂nB
= µB , (1.31)

we can integrate
dG = µAdnA + µBdnB (1.32)

to get

G(nA, nB , T, p) =

∫ nA

0

µAdnA +

∫ nB

0

µBdnB = µA

∫ nA

0

dnA + µB

∫ nB

0

dnB = µAnA + µBnB . (1.33)

This result is the generalization of Eq. (1.28) and we found it for choosing a special ”path” in coordinate space.
Just knowing that G(nA, nB , T, p) is a thermodynamic potential tells us that this result holds in general.
So before mixing the Gibbs energy of the total system is

Gi = nAµA + nBµB = nA

(
µ0
A +RT ln

p

p0

)
+ nB

(
µ0
B +RT ln

p

p0

)
. (1.34)

After mixing we find

Gf = nA

(
µ0
A +RT ln

pA
p0

)
+ nB

(
µ0
B +RT ln

pB
p0

)
. (1.35)

The difference ∆mixG = Gf −Gi, i.e. the Gibbs energy of mixing is

∆mixG = nART ln
pA
p

+ nBRT ln
pB
p

= RT ln

[(
pA
p

)nA

∗
(
pB
p

)nB
]

. (1.36)

Defining molar fractions xA = nA/n, xB = nB/n and taking into account that partial pressures add up according
to their molar fractions, i.e. pA = xAp resp. pB = xBp we can rewrite Eq. (1.36)

∆mixG = nRT (xA lnxA + xB lnxB) . (1.37)

Because molar fractions are always smaller than 1 the logarithms are always negative, i.e. ∆mixG < 0.
Since (∂G/∂T )p,n = −S we find for the entropy of mixing

∆mixS = −nR (xA lnxA + xB lnxB) , (1.38)

i.e. mixing increases the entropy!!!
Since ∆G = ∆H − T∆S we find for ideal mixtures

∆mixH = 0 . (1.39)

In ideal mixtures particles do not interact; thus there is no (inner) ”energy” contribution in addition to the entropy
gain. Since pressure work has to be taken into account (p is the coordinate) it is the enthalpy H which summarizes
all relevant energy contributions.
One further consequence even for ideal mixing we see when taking xA → 0. According to Eq. (1.30) µA → −∞
stabilizing the extremely diluted state in a mixture. This explains why it is so difficult to extract very small
concentrations out of a mixture; the gain in mixing entropy does not allow for this.


