
5.8 First results from the calculation of partition functions 75

5.8 First results from the calculation of partition functions

The canonical partition function for a Hamiltonian which completely separates into subspaces can be written in
the form

ZC(T, V,N) =
∑
i

exp(−βUi) =

N∑
[nα]

exp

(
−β
∑
α

nαϵα

)
. (5.62)

The equation on the right side must fulfill the restriction

N =
∑
α

nα . (5.63)

The grand canonical partition function of a Hamiltonian which completely separates into subspaces can be written
in the form

ZGC(T, V, µ) =

∞∑
N=0

N∑
[nα]

exp

(
−β
∑
α

nα(ϵα − µ)

)
. (5.64)

The big advantage of this partition function is the identity

∞∑
N=0

N∑
[nα]

... =
∑
n0

∑
n1

∑
n2

... (5.65)

i.e. states can be occupied independently and within the partition function an independent sum over independent
energy subspaces is performed, leading to a product over subspace sums.
Finally we get

ZGC(T, V, µ) =
∏
α

∑
nα

exp(−βnα(ϵα − µ))

=
∏
α

(1− exp(−β(ϵα − µ))
−1

for Bosons

=
∏
α

(1 + exp(−β(ϵα − µ))
+1

for Fermions

(5.66)

Just a reminder:

� All quantum mechanical particles with half value spin are called Fermions (Electrons, holes, ...). They obey
the Pauli principle, have antisymmetric complete wave functions and each state can only be occupied once.
So nα can take only the values 0 and 1.

� All quantum mechanical particles with integer spin are called Bosons (photons, phonons, ...). They obey not
the Pauli principle, have symmetric complete wave functions and there is no restriction for the number of
particles within one state. So nα can take all values between 0 and∞. Using the sum rule for the geometrical
series we get the corresponding result for Bosons in Eq. (5.66).

For the grand canonical potential we find

Ω(T, V, µ) = ±kT
∑
α

ln

(
1∓ exp

(
−ϵα − µ

kT

))
(5.67)

and

N = −∂Ω

∂µ
= ∓kT

∑
α

1

exp
(
ϵα−µ
kT

)
∓ 1

∓1
kT

=
∑
α

1

exp
(
ϵα−µ
kT

)
∓ 1

. (5.68)

If exp
(
− ϵα−µ

kT

)
≪ 1 holds we get

ln

(
1∓ exp

(
−ϵα − µ

kT

))
≈ ∓ exp

(
−ϵα − µ

kT

)
. (5.69)

In this case we find for Fermions as well as for Bosons

N = −∂Ω

∂µ
= ∓kT

∑
α

∓ exp

(
−ϵα − µ

kT

)
1

kT
=
∑
α

exp

(
−ϵα − µ

kT

)
(5.70)

This is the so called Boltzmann statistics. As we will see later the above assumption is fulfilled for extremely
diluted systems and at high temperatures (classical particles).
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� Without much effort we could calculate the Fermi-, Bose- and Boltzmann statistics for the grand canonical
ensemble.

� Almost all calculations for electrons in solids are performed for the grand canonical ensemble.

� µ, respectively EF (exactly EF = µ(T = 0)) are just Lagrange parameters (from a mathematically point
of view); they allow to calculate the partition function without any restrictions due to the particle number.
From a physical point of view µ is the energy which a particles has when added to the system. Consequently
∇⃗µ is a force leading to a particle flow.

� Ω = Ω(T, µ, V ); since V is the only extensive parameter in the potential, Ω must be proportional to V . We
find:

Ω ∝ V and
∂Ω

∂V
= −p (5.71)

leading to
Ω = −pV (5.72)


