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5.2 Distribution functions

Having calculated the three overall weight functions for the Maxwell-Boltzmann, Bose-Einstein, and Fermi-Dirac
distribution we now have to calculate the distribution functions themselves. For this we have to answer the question:
What is the most probable configuration?
This question we have to answer taking into account possible restrictions like conserving the overall energy and/or
particle number. Both restrictions represent extensive parameters (i.e. they scale with the size of the system), which
is not true for the weight functions W (here the

∏
i shows up and not

∑
i). This we can cure by not maximizing

W but ln(W ). Further justification will be given in the subsequent sections; here it is enough to state that the
entropy S := k ln(W ) becomes an extensive parameter, i.e. for two independent occupation weights W1 and W2,
having a combined weight W = W1W2, we find the overall entropy

S = S1 + S2 = k ln (W1) + k ln (W2) = k ln (W1W2) = k ln (W ) . (5.11)

Our mathematical task is thus

� Maximize k ln (W ), i.e. k d ln (W ) = 0 =
∑

i

(
∂ ln(W )

∂ni

)
dni

� Under restriction 1: Number of particles N =
∑

i ni is constant, i.e.
∑

i dni = 0

� Under restriction 2: Overall energy ϵ =
∑

i niϵi is constant, i.e.
∑

i ϵidni = 0

To incorporate the restrictions into the optimization problem we will introduce Lagrange parameters β and γ,
leading to the final mathematical problem

max

[
k ln (W )− k γ

(∑
i

ni −N

)
− k β

(∑
i

ϵini − ϵ

)]
. (5.12)

In order to find an explicit solution we now have to specify W , which in our example will be the Maxwell-Boltzmann
weight of Eq. (5.6). Using the Stirling formula ln(x!) ≈ x ln(x)− x we get

ln (W ) = n1 ln (g1) + n2 ln (g2) + n3 ln (g3) + ...

− ln (n1!)− ln (n2!)− ln (n3!)− ...

≈ n1 ln (g1) + n2 ln (g2) + n3 ln (g3) + ...

− (n1 ln (n1)− n1)− (n2 ln (n2)− n2)− (n3 ln (n3)− n3)− ...

= − (n1 ln (n1/g1))− (n2 ln (n2/g2))− ...+ (n1 + n2 + ...)

=
∑
i

ni −
∑
i

ni ln (ni/gi) .

(5.13)

For the total derivative we find

d ln (W ) =
∑
i

dni −
∑
i

dni ln (ni/gi)−
∑
i

nid ln (ni/gi)

=
∑
i

dni −
∑
i

dni ln (ni/gi)−
∑
i

ni(dni)/ni

=
∑
i

dni −
∑
i

dni ln (ni/gi)−
∑
i

dni

= −
∑
i

dni ln (ni/gi) ,

(5.14)

Inserting Eq. (5.14) into the independent variation for all dni of Eq. (5.12) we finally get

ln (ni/gi) + γ + βϵi = 0 for all i, (5.15)

leading to

ni = gie
−γ−βϵi . (5.16)
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The physical meaning of the two Lagrange parameters can now easily be extracted by including Eq. (5.16) into
Eq. (5.14). We get

dS

k
= d ln (W ) = −

∑
i

dni ln (ni/gi)

= −
∑
i

dni (−γ − βϵi)

= γdN + βdϵ

(5.17)

By definition we have
∂S

∂N
= −µ

T
and

∂S

∂ϵ
=

1

T
. (5.18)

Comparison with Eq. (5.17) gives

γ = − µ

kT
and β =

1

kT
, (5.19)

leading to the well known Maxwell-Boltzmann distribution function

ni = gie
− ϵi−µ

kT . (5.20)

The two Lagrange parameter can now be determined by fulfilling the restrictions. From restriction 1 we get

N =
∑
i

ni =
∑
i

gie
−γ−βϵi = e−γ

∑
i

gie
−βϵi = e−γZ . (5.21)

So by introducing the partition function

Z =
∑
i

gie
−βϵi (5.22)

we get

ni =
N

Z
gie

−βϵi . (5.23)

Note: That γ (and thus µ) does not show up in the final results is a common feature of the Maxwell-Boltzmann
distribution function and thus of classical particles. Consequently the canonical ensemble (cf. section 5.4) is typically
used to describe systems of classical particles.
From restriction 2 we get

ϵ =
N

Z

∑
i

gie
−βϵiϵi (5.24)

which in an alternative form can be written as

ϵ = −N

Z

dZ

dβ
= −N d

dβ
ln (Z) (5.25)

So having calculated the partition function Z, the entropy of the system can be calculated. The fundamental
meaning of ln (Z) will be discussed in larger detail in the remaining sections. There entropy will be discussed from
a more general point of view and makes it unnecessary to solve the maximization problem for the entropy for the
Bose-Einstein and Fermi-Dirac distributions separately. Here we will just state the final results:

Bose-Einstein distribution: ni =
gi

e
ϵi−µ

kT − 1
. (5.26)

Fermi-Dirac distribution: ni =
gi

e
ϵi−µ

kT + 1
. (5.27)


