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Figure 4.3: a) Geometry of the collision tube. b) Momentum distribution close to a wall allowing for the definition
of viscosity. c) General model for describing transport phenomena.

4.5 Simple collision theory and transport model

Scattering is the essential concept to understand transport phenomena in vapors, liquids, and solids. Without
scattering all particles would keep their velocity even without any external force which of course is experimentally
only found under vacuum condition. Typically moving particles with a density n are scattered by (non moving)
particles (defects) with a density N . One possible fundamental error being related to scattering is the expectation
that a mean free path λ between two scattering events of the moving particles is related to the mean distance
between defects. This would in 3D imply that λ ∝ N1/3 which is in contradiction to the experimental finding
λ ∝ N . The correct modeling needs for the concept of a collision/scattering cross section σ. This concept has
first been introduced and can most easily be understood for a perfect gas where the moving particles and the
scatter centers are the same gas molecules. On the one hand the perfect gas allows for a very easy and illustrative
understanding of the collision cross section area, on the other hand that both scattering partners are moving implies
an additional complexity to the problem. So in what follows we will discuss both examples in parallel.
As illustrated in Fig. 4.3 a) the starting point of the discussion of scattering of gas molecules is a frozen state
model, i.e. all particles except one are assumed to stay fix while one particle is moving down the collision tube.
Just geometrically a collision cross section σ is defined:

σ = π (r1 + r2)
2 ≈ π (2r1)

2
= πd2 for r1 ≈ r2 . (4.34)

For classical particles (gas molecules) the size of the diameter d of a collision tube is quite easy to understand and
well determined, but e.g. for electrons within a metal ”colliding” with defects the electron scattering cross section
is more a fitting parameter quantifying the relevance of defects as scattering centers.
Introducing the volume of the collision tube Vct and using the particle density n∗ the mean free path λ is calculated
by

λσ = Vct =
1

n∗ i.e. λ =
1

σ n∗ . (4.35)

Introducing the average time between two collisions ∆t and the average relative speed between particles crel we
get ∆t = λ/crel which allows us to calculate the number of collisions inside the collision tube per time by

z =
1

∆t
=

Vctn
∗

∆t
=

σcrel∆tn∗

∆t
= σcreln

∗ . (4.36)

� For e.g. electrons and typical defects crel = c is just the average speed of the electrons which can be calculated
using various models, n∗ = N is the defect density, and σ a parameter depending on the type of defects and
the type of metal.

� For a perfect gases n∗ = p/kT and crel =
√
2c (According to Eq. (4.23) the factor

√
2 shows up from a non

trivial averaging procedure and will not be discussed here in more detail), so

z =

√
2p σ c

kT
, (4.37)

which e.g. for N2 at 300 K and 1 bar (M = 28 g/mol) leads to

c =

√
8RT

πM
≈ 476m/s ; z ≈ 7× 109s−1 , (4.38)
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so the time between two collisions is 1/z = 1.4× 10−10s.
The mean free path λ, i.e. the average distance that particles can travel between two collisions, is

λ = c
1

z
=

1√
2σn∗

=
kT√
2pσ

, (4.39)

which for the example of N2 above results in λ ≈ 68nm.

Each moving particle transports several other properties like it’s charge, energy, momentum, or mass. Having
thermodynamic equilibrium on average for each particle moving in one direction one particle is found moving
in the opposite direction, so no net transport exists. Introducing forces/reservoirs which continuously sustain
gradients in certain properties net transport will occur; thus we leave the regime of thermodynamic equilibrium
and discuss kinetics.
The following model is quite general. We will discuss the transport of the property Γ by moving particles with a
density n∗ and a velocity v which by collision transfer Γ to other particles. Such collisions will on average occur
when particles have traveled a mean free path λ. As the only relevant simplification we assume that the lateral
changes in the parameter Γ, n∗, and v are of linear order on the length scale of λ, i.e. a Taylor expansion up to
linear order is suitable to calculate net transport of Γ. Schematically this conditions are shown in Fig. 4.3 c), and
Fig. 4.3 b) illustrates the situation used for describing viscosity, i.e. Γ being the momentum in x direction with
gradients in z direction.
Let us discuss the situation at an arbitrary position z1. From the right side a particle flow will collide at position
z1 coming on average from z1 + λ, i.e.

1

6
n∗(z1 + λ)v(z1 + λ) ≈ 1

6

[
n(z1) + λ

dn

dz

] [
v(z1) + λ

dv

dz

]
. (4.40)

Correspondingly from the left side we find

1

6
n∗(z1 − λ)v(z1 − λ) ≈ 1

6

[
n(z1)− λ

dn

dz

] [
v(z1)− λ

dv

dz

]
. (4.41)

We will use the above relations to find the corresponding microscopic descriptions for transport of matter (diffusion),
energy (heat transport), and momentum (viscosity)

jdiff = −Ddn

dz
jheat = −κ

dT

dz
jviscosity = −η dvx

dz
. (4.42)

Just for simplicity we restrict the notation to 1 D and will later (easily) translate to a 3D notation.
The difference between both particle flows in Eq. (4.40) and Eq. (4.41) is already one of the fundamental transport
mechanisms. Having v = const. = c (i.e. T = const.) we find

−1

3
λc

dn

dx
:= −Ddn

dx
= jdiff , i.e. D =

1

3
λc . (4.43)

For viscosity n and v and the variation of vx in z direction is illustrated in Fig. 4.3. Only the transported momentum
in x direction differs along the z-direction:
From right:

−1

6
n∗vm

[
vx + λ

dvx
dz

]
. (4.44)

From left:

+
1

6
n∗vm

[
vx − λ

dvx
dz

]
, (4.45)

leading to the difference

−1

3
n∗vmλ

dvx
dz

, i.e. η =
1

3
n∗mvλ . (4.46)

� For gases the viscosity is independent of the pressure since according to Eq. (4.39) the product λn∗ = const..
Since v ∝ T the viscosity of gases increases with increasing temperature.

� In contrast for liquids the viscosity decreases with increasing temperature, following a law η = Aeb/T . This
can be explained by a necessary activation energy for a sliding of molecule layers against each other.
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Having temperature gradients within gases each particle transports heat energy 1
2mv2 = f

2kT . The heat currents
are
From right:

1

6
n∗(z1 + λ)
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dv
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)
f

2
kT (z1 + λ) . (4.47)

From left:
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)
f

2
kT (z1 − λ) . (4.48)

Since p is constant (i.e. isobaric condition), according to the ideal gas equation we find const. = p = kTN/V =
kTn∗, so only the change in velocity is relevant leading to the difference

−1

3
n∗ f

2
kTλ

dv

dz
. (4.49)

Since T ∝ v2 we get
1

v

dv

dz
=

1

2

1

T

dT

dz
, (4.50)

finally leading to a heat current

j = −1

3
n∗ f

2
kvλ

dT

dz
, i.e. κ =

f

6
n∗kvλ (4.51)


