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1.2 Free quantum mechanical particles and band structure

Particles within a regime of zero or constant potential energy are called ”free particles”. Momentum

p⃗(k⃗) = ℏk⃗ and energy E(k⃗) =
ℏ2k2

2me
(1.4)

are conserved properties where me is the mass of a free electron.
Within the periodic potential of a crystal electronic states can be described using the Bloch-Theorem leading to
band energies Eband(k⃗). The position of the Fermi energy EF (the standard name for the chemical potential in
solid state physics, i.e. EF = µ) allows for the classification of solids:

� Metal: Fermi energy within band

� Semiconductor: Fermi energy within band gap (Eg < 2 eV)

� Insulator: Fermi energy within band gap (Eg large, typically > 3 eV)

For semiconductors a further distinction into

� Direct Semiconductor: Minimum of conduction band and maximum of valance band at same k⃗ vector (nec-
essary for optoelectronic application)

� Indirect Semiconductor: Minimum of conduction band and maximum of valence band at different k⃗ vectors

is useful.
For nearly all analytical approaches the general band structure Eband(k⃗) is too complicated. Thus a very often
used ”trick” is needed, translating the band structure into quasi free electrons described by Eq. (1.4). The only
parameter to adapt the ”free electrons” to the real band structure is the mass me being now called ”effective mass”
me,eff with the definition

ℏ2

me,eff (k)
=

d2E(k)

dk2
. (1.5)

i.e. the effective mass is (up to a scaling factor) just the inverse of the curvature of the band structure.
In case of a 3D band structure the inverse of the effective mass tensor is defined by the Hesse matrix

ℏ2m−1
e (k)ij =

∂2E(k)

∂ki∂kj
. (1.6)

The main diagonal elements of the effective mass tensor (if necessary after unitary transformation) are often used
for a 1D representation

me,eff (k) = (me(k)11 ∗me(k)22 ∗me(k)33)
1
3 . (1.7)

Figure 1.1: Silicon band structure including the rel-
evant curvatures for defining effective masses

Fig. 1.1 shows the band structure of silicon including two
parabolic functions which approximate the conduction band
minimum (close to k = X) and valence band maximum at
Γ. Since obviously minimum and maximum are at differ-
ent k-values silicon (as well known) is an indirect band gap
semiconductor. Using the effective electron mass concept
the regime around the conduction band minimum can be
described by

E(k) = EC +
ℏ2(k −X)2

2me,eff (X)
. (1.8)

Obviously the curvature of the valence band is negative
which is interpreted as an effective hole mass. The regime
around the valence band maximum can thus be described
by

E(k) = EV −
ℏ2(k − Γ)2

2mh,eff (Γ)
. (1.9)

In Eq. (1.9) we used a typical convention to take the negative
sign of the curvature explicitly into account and the effective
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hole mass is just the absolute value of the inverse curvature.
The over all electron density n is calculated by

n =

∫ ∞

Ec

Dcond band(E)f(E,µ, T )dE , (1.10)

and the over all hole density p by

p =

∫ EV

−∞
Dval band(E) (1− f(E,µ, T )) dE , (1.11)

whereDcond band(E) andDval band(E) are the densities of state for both bands. For non degenerated semiconductors
EC ≫ µ and EV ≪ µ. Thus in Eq. (1.10) we can approximate the Fermi-distribution by the Boltzmann distribution,
i.e.

f(E,µ, T ) =
1

exp
(

E−µ
kT

)
+ 1
≈ exp

(
−E − µ

kT

)
. (1.12)

Correspondingly we find for the holes in the valence band

1− f(E,µ, T ) = 1− 1

exp
(

E−µ
kT

)
+ 1

=
1

exp
(

µ−E
kT

)
+ 1
≈ exp

(
−µ− E

kT

)
. (1.13)

Combining Eqs. (1.10 - 1.13) one can get

n(T ) = ni(T ) = NC,eff exp

(
−EC − µ

kT

)
, (1.14)

p(T ) = ni(T ) = NV,eff exp

(
−µ− EV

kT

)
, (1.15)

Here NC,eff and NV,eff are constants, depending on the effective masses m
3
2

eff .
Consequently we find the mass action law

n(T ) ∗ p(T ) = n2
i (T ) = NV,eff ∗NC,eff exp

(
−EC − EV

kT

)
, (1.16)

independent of the position of the chemical potential µ. Note that to get this result the Boltzmann approximation
of the Fermi distribution of both conduction and valence band was necessary, i.e. the mass action law only holds
for classical particles.
From charge neutrality we finally get

µ =
EC + EV

2
+

kT

2
ln

(
NV,eff

NC,eff

)
. (1.17)

Note: The results from Eq. (1.12) to Eq. (1.17) describe results when electrons and holes behave like purely
classical particles. Thus they resemble results well known from classical chemistry.
Essentials:

� The ideal case is described by free particles. Non ideal properties are described by rephrasing parameters in
the ideal equations (e.g. the effective mass).

� Particles can be interpreted as classical in extremely diluted systems, i.e. there exist many more quantum
mechanical states than particles.

For the electron resp. hole mobility holds

µe =
qτ

me,eff
, µh =

qτ

mh,eff
(1.18)

where τ is the average time between two scattering events.
The Einstein relation allows to translate mobilities into diffusion coefficients

De = µe
kT

q
respectively Dh = µh

kT

q
. (1.19)
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Finally the conductivity is defined by

σ = σe + σh = qµen+ qµhp , (1.20)

which completes the equations necessary to describe transport properties for electrons and holes (in semiconduc-
tors).
Essentials:

� Transport properties are a combination of quantum mechanics and classical physics.

� Quantum mechanics contributes the band structure, i.e. Eg = EC −EV , effective masses and scattering time
τ .

� The remaining is classical physics.


