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6.4 Mathematical solutions for limiting cases

Mathematically Egs. (6.12)), (6.13), and (6.14) represent a set of differential equations of first order with constant
coefficients which can always be solved by an exponential approach. Many kinetic problems are simplified to this
degree to make possible an analytic solution of the full kinetic scheme and an application of some standard tricks to
further analyze certain limiting cases. Later on we will calculate the full problem and so double check the validity
of the following (simple) calculations.

1. First let us assume just a tiny opening As3 between the vapor phase in the bottle to the surrounding, leading
to a tiny value of ko, much smaller than k; and k3. So the transport of carbon dioxide out of the bottle is the
slowest process and therefore called the rate determining step. We have to wait for a long time, i.e. solve the
problem for large times in order to be sensitive to this slow carbon dioxide loss. k; and k3 are so large that
it just takes an irrelevant time for the carbon dioxide within the bottle to relax into nearly thermodynamic
equilibrium, i.e. dI;/dt = 0 holds for the time scale under investigation. So according to Eq. (6.12) we get

k‘lll = kg[g . (615)

This approach and the corresponding result is called the pre-steady state condition and is often applied in the
discussion of transport and kinetic phenomena. Additionally the conservation of carbon dioxide molecules
reads I (t) + I2(t) + I3(t) = Ip where Iy = I1(0) + I3(0) is the starting amount of carbon dioxide molecules
in the bottle. Including all relations into Eq. (6.13) we get
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which is a simple first order inhomogeneous linear differential equation. Introducing a new variable I(t) =
I5(t)—Ij the differential equation becomes homogeneous. Taking I3(0) = 0 the final solution of this differential

equation is
ko k1
I3(t) =1y |1 — - t . 1
(0= 1o |1 exp (20| (6.17)

So the kinetics of the outlet is not only defined by its direct kinetic coefficient but by the type of thermo-
dynamic equilibrium which forms within the bottle, i.e. keffective = k]i2+kk13 is a combination of all individual
kinetic coefficients.

2. Next we will discuss a completely open bottle, ks will become extremely large. All vapor will nearly instantly
leave the bottle, so in good approximation Is = 0. Now the conservation of carbon dioxide molecules reads
I (t)+ I3(t) = Iy where Iy = I1(0) is the starting amount of carbon dioxide molecules in the bottle. Including
this into Eq. (6.12) we get

dl

dt = 7]61[1 resp. Il(t) = Io exp (7](11 t) and Ig(t) = IO [1 — exp (7,’{1 t)] . (618)

So from such an experiment we can extract the pure kinetic coefficient k1. The process related to the smallest
kinetic coefficient is called the rate limiting step. In a sequence of reactions this process takes longest time
and therefore dominates the whole time evolution.

3. As a third limiting case we will discuss k2 = 0, i.e. having no gas leaking out of the bottle. Now the
conservation of carbon dioxide molecules reads I (t) + Iz(t) = Iy where Iy = I1(0) + I2(0) is the constant
overall amount of carbon dioxide molecules in the bottle. Including this into Eq. (6.13)
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Introducing a new variable I(t) = I5(t) — k‘lljrilk'd

solution is

Iy the above differential equation gets homogeneous and the

k
b(t) = Ky +1/c3

So now the effective kinetic coefficient is ke fective = k1 + k3. For t — oo steady state is reached with Io(t —

00) = =1 and I (t — 00) = Iy — Ir(t = 00) = 1E3-Ip. We see that ky I1(t — 00) = k3 Io(t — c0). This

is of course the thermodynamic equilibrium composition which e.g. follows directly from Eq. (6.12) taking
dI/dt = 0.

In= (IQ(O) - k;llj_lk;slo) exp (—(k1 + k3) t) (6.20)
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4.

For the fourth example we now additionally assume a full bottle, i.e. V3 > V5. So the second slowest kinetic
coefficient is k1. This should now be the rate determining step. Following the discussion above we would
expect the transport from the vapor phase into the water to be much faster than the backward process. BUT
our experience tells us just the opposite: When shaking the bottle much gas is leaving the water! Where is
the error? Actually we ignored several steps in the reaction chain within the water! Carbon acid is formed
according to

H;0 + CO; = HyCO3 . (6.21)

Additionally the solubility of carbon dioxide in water is small, leading to a phase separation (as discussed in
section 5.9) in two phases, one water phase with a small concentration of carbon dioxide and one vapor phase
with a small concentration of water(vapor). The kinetics of such redox reaction will be discussed in detail
in the summer term. Here it is enough to state that, according to the principle of Le’ Chatelier, increasing
the pressure will support the formation of carbon acid while reducing the pressure will favor the formation
of carbon dioxide. While shaking, some regions within the water will exhibit a reduced local pressure; here
carbon dioxide is formed which due to the low solubility nearly instantly leads to the formation of gas
bubbles. Much kinetics is involved in this nucleation of gas bubbles, their subsequent growth, their possible
sticking to the bottle walls and upwards movement due to the buoyant force (induced by gravity). The
backward reaction from carbon dioxide within gas bubbles to carbon acid is much slower, so most of the gas
bubbles which formed by shaking the bottle will move upwards into the vapor phase. Only by a comparably
slow process this carbon dioxide will again enter the water as described above. The whole process can be
summarized again as a reaction scheme similar to Eq. (6.10) with I; being carbon dioxide stored as carbon
acid, Is carbon dioxide bubbles in water, and I3 carbon dioxide in the above vapor phase. ki, ko, and k3 are
the corresponding kinetic coefficients which, by solving the set of differential equations, makes it possible to
calculate the effective kinetic coefficients as used above. This way one can take into account more and more
transport and kinetic processes to describe the time dependencies in a system.

Let us summarize our results:

In most cases transport and kinetics are much more difficult to understand and to describe than the thermo-
dynamic equilibrium!

Often various types of forces have to be taken into account: In our example friction forces (sticking to the
bottle wall, bubble movement through the viscous water) and gravity.

Depending on the treatment, e.g. open bottle with and without shaking, different processes have to be taken
into account. BUT: Often one effective kinetic coefficient can be assumed to describe such processes. So the
equation in limiting case 2 will hold. Just strongly different values for k; can be expected.

By combining several experiments with different limiting cases often a full set the kinetic coefficients can be
extracted.

This heuristic approach does not need any microscopic understanding of the underlying transport mechanisms
and kinetic processes. In summer term we will close the missing link to the microscopic world.



