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5.9 Phase separation

For the regular solution (cf. Eq. (5.26)) as well as for the asymmetric interaction enthalpy according to Eq. (5.28)
graphs for ∆mixGm for different values of β are shown in Fig. 5.6. For large values of β a concave branch in the
molar excess Gibbs potential is found. Such parts are not stable (cannot exist) and must be replaced by a common
tangent as illustrated by the dashed lines. Physically this implies a phase separation between the two compositions
connected by the common tangent. For regular solutions the two connected points are arranged symmetrically
around xA = 0.5 while for the asymmetric enthalpy both points are arranged asymmetrically.

Figure 5.6: Molar Gibbs potential for a) regular (symmetric) excess enthalpy and b) for an asymmetric excess
enthalpy. Both show for large β values an unstable ( not strictly convex) regime leading to phase separation.

Next we will calculate for regular solutions the compositions between

Figure 5.7: The limits for phase separation
vs. β for regular solutions (miscibility gap).

which phase separation exists. As visible in Fig. 5.6 these points are
found at the minima of ∆mixGm, i.e.
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(5.29)

This is a transcendental equation for which the solutions can only be
found numerically. Fig. 5.7 shows the typical shape of the boundary
curve vs. β. As indicated above β ∝ 1/T so with increasing T the
dimensionless scaling factor β decreases. For β < 2 phase separation
does not exist anymore, i.e. it vanishes at high temperature. So β = 2
is the critical value which is indicated in Fig. 5.6 a) as well. So phase
separation exists only for repulsive forces A-B between the molecules.
Phase separation is the response of the system to two opposing effects:
the increase of entropy which always favors mixing and the increase of enthalpy due to the repulsive forces which
supports demixing.


